
NASA CR-132552

(NASA-CR-132552) DEFINITION AND TRADE-OFF N75-15325
STUDY OF RECCNFIGURABLE AIRBORNE DIGITAL
COMPUTER SYSTEM ORGANIZATIONS Final Report,
9 Oct. 1973 - 8 Nov. 1974 (Ultrasystems, Unclas
Inc., Newport Beach, Calif.) 301 p HC $9.25_G3/60 06803

DEFINITION AND TRADE-OFF STUDY OF

RECONFIGURABLE AIRBORNE DIGITAL

COMPUTER SYSTEM ORGANIZATIONS

FINAL REPORT

NOVEMBER 1974

PREPARED UNDER

NASA CONTRACT NAS1-12793
FOR

NASA LANGLEY RESEARCH CENTER
HAMPTON, VIRGINIA

BY

NEWPORT BEACH, CALIFORNIA 09 ' -

RECONFIGURABLE COMPUTER

SYSTEMS STUDY

FINAL REPORT

CONTRACT SCHEDULE ITEM III-E

prepared for

Langley Research Center
National Aeronautics and Space Administration

Hampton, Virginia 23665

Contract NAS1 -12793

by

Ultrasystems, Inc.
500 Newport Center Drive

Newport Beach, California 92660

November 1974

, e' e m l I d -"=,,,.,m

FOREWORD

This Final Report was prepared by Ultrasystems, Incorporated, Newport
Beach, California, under National Aeronautics and Space Administration contract
NASI-12793. The work was performed between 9 October 1973 and 8 November 1974.
Sponsorship for this work was provided by the Flight Instrumentation Division,
Electronics Directorate, Langley Research Center. The Project Monitor was
Mr. J. Larry Spencer with technical assistance provided by other members of the
Aircraft Electronics Research Section.

The Ultrasystems' Study Leader was Ralph B. Conn. Other participants
in the study were Dr. A. A. Avilienis, Mr. H. 0. Levy, Dr. P. M. Merryman,
Mr. S. R. Pond, Dr. D. A. Rennels, Dr. J. A. Rohr, and Mr. K. L. Whitelaw.

Publication of this report does not constitute NASA approval of the
findings or conclusions indicated in the report. It is published for the
exchange of information and stimulation of ideas.

RECONFIGURABLE COMPUTER SYSTEMS STUDY

FINAL REPORT

TABLE OF CONTENTS

PAGE

1.0 SUMMARY AND INTRODUCTION 1-1

1.1 OBJECTIVE, ACCOMPLISHMENTS, AND CONCLUSIONS 1-1

1.1.1 Objective 1-1

1.1.2 Accomplishments 1-1

1.1.3 Conclusions 1-2

1.2 INTRODUCTION 1-4

1.3 SYSTEM ORGANIZATION CONCEPTS 1-5

1.3.1 "Mostly" - Software Configurations 1-6

1.3.2 Hardware - Aided Software Configurations (HASW) 1-8

1.3.3 Mostly-Hardware Configurations 1-9

1.4 EXECUTIVE STRUCTURE 1-10

1.5 MEASURES OF FAULT-TOLERANCE 1-13

1.6 ANALYTIC MODELING 1-15

1.7 SIMULATION 1-16

1.8 COMBINED ANALYTIC-SIMULATIVE TECHNIQUE 1-20

1.9 RECOMMENDATIONS 1-21

2.0 SYSTEM ORGANIZATION CONCEPTS 2-1

2.1 "MOSTLY"-SOFTWARE REDUNDANT CONFIGURATION (MSW) 2-2

2.1.1 Internal Communications for Fault Detection and
Transient Recovery 2-3

2.1.1.1 Voting and Synchronization 2-5

2.1.1.2 Transient Recovery Techniques 2-7

2.1.1.3 Transient Recovery - Implementation 2-9

2.1.1.4 Utilization of Transient Recovery Techniques . 2-12

ii

RECONFIGURABLE COMPUTER SYSTEMS STUDY

FINAL REPORT

TABLE OF CONTENTS (Cont'd)

PAGE

2.1.2 Redundant I/0 Structures for Communications with
Fault Masking 2-12

2.1.2.1 Dedicated Busses 2-13

2.1.2.2 Non-Dedicate Busses (Non-Dedicated Sensors 2-16

2.1.2.3 Non-Dedicated Switched Busses 2-17

2.1.3 Executive Program Considerations 2-20

2.1.3.1 Voter Module 2-21

2.1.3.2 Input/Output Module 2-25

2.1.3.3 Error-Handler Module 2-26

2.1.4 Applications Programs Considerations 2-26

2.1.5 Machine Features and RETs 2-28

2.1.5.1 Machine Features 2-28

2.1.5.2 Reliability Enhancement Techniques 2-29

2.1.5.3 Machine Options 2-29

2.1.5.4 Fault Detection 2-30

2.1.5.5 Transient Recovery 2-31

2.1.5.6 Internal Cross Connections 2-31

2.1.5.7 I/0 Structures 2-31

2.1.5.8 Bus Fault-Detection 2-32

2.2 HARDWARE-AIDED SOFTWARE CONFIGURATIONS (HASW) 2-33

2.2.1 The External Electronics Module (EEM) 2-35

2.2.1.1 Case 1 - No Faults 2-36

2.2.1.2 Case 2 - One Computer Disagrees . 2-36

2.2.1.3 The Transient Recovery Mechanism 2-38

iii

RECONFIGURABLE COMPUTER SYSTEMS STUDY

FINAL REPORT

TABLE OF CONTENTS (Cont'd)

PAGE

2.2.1.4 Case 3 - Multiple Faults 2-39

2.2.2 Residual Duplex and Augmented Voting Redundancy 2-40

2.2.3 A Recovery Algorithm: Hardware-Aided Software
Configuration 2-40

2.2.3.1 Hardware EEM Functions 2-41

2.2.3.2 The Software Function 2-44

2.2.4 Utilization of Redundant EEM Units 2-45

2.2.4.1 Non-Dedicated Redundant EEMs 2-45

2.2.4.2 Dedicated EEMs 2-47

2.3 MOSTLY-HARDWARE CONFIGURATIONS 2-48

2.3.1 Augmented EEM Units 2-49

2.3.1.1 The State Control Function 2-49

2.3.2 Recovery Control 2-49

2.3.2.1 Memory Copy Implementation 2-52

2.3.2.2 Rollahead - Rollback - Copy Implementation . 2-54

2.3.3 A Comparison of MHW and HASW Implementations 2-54

3.0 EXECUTIVE STRUCTURE 3-1

3.1 DESIGN GOALS 3-1

3.2 SKELETON MODULES 3-2

3.2.1 Scheduler 3-4

3.2.2 Input-Output Driver 3-4

3.2.3 Interrupt Processor 3-5

3.2.4 Machine Error Handler 3-6

3.2.5 Interaction 3-6

iv

S)St RECONFIGURABLE COMPUTER SYSTEMS STUDY

FINAL REPORT

TABLE OF CONTENTS (Cont'd)

PAGE

3.3 SCHEDULING MECHANISMS 3-7

3.3.1 Synchronous 3-8

3.3.2 Synchronous with Asynchronous Overlay . . 3-10

3.3.3 Hybrid 3-10

3.3.4 Hybrid with External Interrupts 3-10

3.3.5 Constrained Asynchronous 3-12

3.3.6 Comparison and Contrast 3-12

3.4 ADAPTABILITY 3-13

3.5 SOFTWARE STRUCTURE AND FAULT-TOLERANCE IMPLEMENTATION 3-14

3.5.1 Software Structure Considerations for a Duplex
System 3-14

3.5.1.1 Executive Scheduling Mechanisms 3-14

3.5.1.2 Typical Computational Cycle 3-16

3.5.1.3 Redundancy Requirements 3-18

3.5.1.4 Tradeoffs 3-19

3.5.2 Software Structure Considerations for a TMR
System 3-21

3.5.2.1 Executive Scheduling Mechanisms 3-21

3.5.2.2 Typical Computational Cycle 3-22

3.5.2.3 Redundancy Requirements 3-23

3.5.2.4 Tradeoffs 3-24

4.0 MEASURES OF FAULT-TOLERANCE 4-1

4.1 THE CONCEPT OF FAULT-TOLERANCE 4-1

4.1.1 The Reliability Problem for Computers 4-1

4.1.2 "Fault-Intolerant" Design for Reliable Operation . 4-2

v

RECONFIGURABLE COMPUTER SYSTEM STUDY

FINAL REPORT

TABLE OF CONTENTS (Cont'd)

PAGE

4.1.3 Design of "Fault-Tolerant" Systems 4-3

4.2 QUANTITATIVE SPECIFICATION OF FAULT-TOLERANCE 4-5

4.2.1 Classification of Measures 4-5

4.2.2 Discrete Fault Tolerance (DFT) 4-6

4.2.3 Reliability 4-8

4.2.4 Survivability 4-9

4.2.5 Quantitative Measures of Survivability . . 4-11

5.0 ANALYTIC MODELING 5-1

5.1 MODELING APPROACH 5-1

5.1.1 General 5-1

5.1.2 Solution Approach 5-1

5.2 TRANSIENT FAULTS 5-2

5.2.1 Transient Arrival 5-2

5.2.2 Transient Duration 5-4

5.3 TRANSIENT RECOVERY MODEL 5-4

5.3.1 Components of Transient Recovery 5-4

5.3.2 Fault Detection 5-5

5.4 ANALYSIS OF AN ENHANCED TMR CONFIGURATION 5-6

5.4.1 Definitions and Assumptions 5-6

5.4.2 Failure Probability 5-8

5.4.3 Transient Leakage 5-13

5.4.4 Transient Coverage 5-16

5.4.5 Simplifying Assumptions for Shorter Mission
Times 5-17

5.4.6 Extension of TMR Modeling to N Computers 5-18

vi

RECONFIGURABLE COMPUTER SYSTEM STUDY

FINAL REPORT

TABLE OF CONTENTS (Cont'd)

PAGE

5.4.6.1 Fault/Recovery State Diagram 5-18

5.4.6.2 Definitions and Review 5-20

5.4.6.3 Finding Failure Probability for Four Computers . 5-22

5.4.6.4 Finding the Failure Probability for Five
Computers 5-23

5.4.6.5 Generalization to N Computers 5-25

5.4.7 Recovery Start Delay 5-25

5.5 MODELING OF GENERAL CONFIGURATIONS 5-28

5.5.1 The Recovery Process 5-28

5.5.1.1 Coverage 5-28

5.5.1.2 Transient Leakage 5-29

5.5.1.3 Permanent Recovery 5-29

5.5.1.4 Notation System 5-30

5.5.2 Analysis of a Duplex Configuration 5-30

5.5.2.1 Definitions and Assumptions 5-30

5.5.2.2 Fault/Recovery State Diagram 5-31

5.5.2.3 Failure Probability 5-32

5.5.3 Extension to N Computers. 5-34

5.5.3.1 State Diagram 5-34

5.5.3.2 Failure Probability Determination 5-36

5.5.3.3 General Solution 5-37

5.5.4 Simplifying Assumptions 5-40

5.5.4.1 Simplex 5-40

5.5.4.2 Duplex 5-41

5.5.4.3 Enhanced TMR 5-41

vii

RECONFIGURABLE COMPUTER SYSTEM STUDY

FINAL REPORT

TABLE OF CONTENTS (Cont'd)

PAGE

5.5.4.4 Adaptive TMR 5-42

5.6 MARKOV CHAIN ANALYSIS METHOD 5-42

5.6.1 Mathematical Model 5-42

5.6.1.1 Development of the Differential Equation . 5-44

5.6.1.2 Solution Procedure 5-47

5.6.1.3 Closed Form Solution 5-48

5.6.1.4 Power Series Evaluation of P(t) 5-49

5.6.2 Application to the Duplex Configuration . 5-50

5.6.2.1 Determination of the Transition Matrix . 5-50

5.6.2.2 Closed Form Solution for Duplex Configuration . 5-53

5.6.2.3 Approximation for Small Mission Times . . 5-46

5.6.3 Application to Adaptive TMR Configuration . . 5-58

5.6.3.1 Determination of the Transition Matrix . . . 5-58

5.6.3.2 Approximations for Small Mission Times . . 5-59

5.6.4 Programs 5-60

5.6.4.1 Projector Method 5-60

5.6.4.2 Power Series Method 5-61

5.6.5 Conclusions 5-62

6.0 SIMULATION 6-1

6.1 OBJECTIVES OF SIMULATION 6-1

6.1.1 Configuration Fault-Tolerance 6-1

6.1.2 Determination of Global Parameters Used in
Analytical Modeling 6-1

6.1.3 Fault Environment 6-2

viii

RECONFIGURABLE COMPUTER SYSTEMS STUDY

FINAL REPORT

TABLE OF CONTENTS (Cont'd)

PAGE

6.2 GENERAL ORGANIZATION OF THE SIMULATION 6-2

6.2.1 General Approach 6-2

6.2.2 Organization of the Simulator 6-3

6.3 INPUTS/OUTPUTS 6-8

6.3.1 Inputs 6-8

6.3.1.1 Detection Probabilities 6-10

6.3.1.2 Self-Test Program Efficiency 6-12

6.3.1.3 Dedicated/Non-Dedicated EEMs 6-12

6.3.1.4 Existing Recovery Algorithms. 6-12

6.3.1.5 Unacceptable Recurrence Intervals 6-12

6.3.1.6 Program Integrity 6-12

6.3.1.7 Memory Copy Efficacy 6-13

6.3.2 Output 6-13

6.4 STATE DIAGRAM 6-14

6.4.1 Normal Operation (3 or more Units) 6-14

6.4.2 Rollahead (or State Vector Transfer 6-17

6.4.3 Memory Copy 6-17

6.4.4 System Restart 6-17

6.4.5 Introduction of a Spare 6-18

6.4.6 Normal Operation (2 Units) 6-18

6.4.7 Rollback 6-18

6.4.8 Diagnosis 6-19

6.4.9 Normal Operation (Simplex) 6-19

6.4.10 Rollback in Simplex 6-19

ix

RECONFIGURABLE COMPUTER SYSTEMS STUDY

FINAL REPORT

TABLE OF CONTENTS (Cont'd)

PAGE

6.4.11 System Failure 6-20

6.5 SIMULATOR IMPLEMENTATION 6-21

6.5.1 Fault Generation 6-21

6.5.1.1 Introduction 6-21

6.5.1.2 Parameters 6-21

6.5.1.3 Description of the Fault Table 6-23

6.5.1.4 General Organization of the Fault Generator . 6-23

6.5.1.5 Determination of the Occurrence Time of the Faults
According to a Poisson Distribution Function . 6-23

6.5.1.6 Determination of the Duration 6-27

6.5.1.7 Determination of the Occurrence Time of the
Faults According to a Burst Distribution
Function 6-27

6.5.2 Normal Operation (3 or More Units) 6-27

6.5.3 Rollahead 6-27

6.5.4 Other States 6-31

6.5.5 Introduction of the Scheduling Mechanisms . 6-31

6.5.5.1 Synchronous Scheduling 6-33

6.5.5.2 Detection of Faults 6-33

6.5.5.3 Iteration Losses 6-33

6.5.5.4 Asynchronous Scheduling 6-34

6.5.6 EEM Faults 6-34

6.5.6.1 Dedicated EEMs 6-34

6.5.6.2 Non-Dedicated EEMs 6-34

6.5.7 Input-Output Faults 6-35

6.5.7.1 Dedicated Buses 6-35

RECONFIGURABLE COMPUTER SYSTEMS STUDY

FINAL REPORT

TABLE OF CONTENTS (Cont'd)

PAGE

6.5.7.2 Non-Dedicated Buses 6-38

6.6.1 Fault Generator 6-38

6.6.2 Simulator 6-38

6.7 AI L RUN UJ9

7.0 PARAMETERS 7-1

7.1 SIMULATOR 7-1

7.1.1 STP Efficiency 7-1

7.1.1.1 STP Requirements 7-1

7.1.1.2 Efficiency Estimation 7-2

7.1.1.3 Typical Computers 7-3

7.1.2 Program Integrity 7-3

7.1.2.1 CPU Faults 7-3

7.1.2.2 Memory 7-3

7.1.2.3 PI Estimation 7-4

7.1.3 BITE Efficiency 7-6

7.1.3.1 CPU BITE Efficiency 7-6

7.1.3.2 Memory BITE Efficiency 7-6

7.2 ANALYTIC MODEL 7-7

7.2.1 Computer Effective Failure Rate 7-7

7.2.2 Recoverability 7-8

7.2.3 Transient Leakage 7-8

8.0 COMPLEMENTARY ANALYTIC-SIMULATIVE TECHNIQUE 8-1

8.1 OVERALL STRUCTURE 8-1

8.2 RCS ENGINEERING ANALYSIS 8-1

xi

RECONFIGURABLE COMPUTER SYSTEMS STUDY

FINAL REPORT

TABLE OF CONTENTS (Cont'd)

PAGE

8.3 SIMULATION 8-3

8.4 ANALYTIC MODELING 8-3

9.0 CONFIGURATION ANALYSES AND TRADE-OFF STUDIES 9-1

9.1 GENERAL 9-1

9.2 PARAMETERS USED FOR EVALUATION 9-2

9.2.1 Mostly-Software Configurations 9-2

9.2.1.1 Physical Parameters 9-2

9.2.1.2 Software Characteristics 9-4

9.2.1.3 Parameters Affecting Fault Tolerance in the
Computers 9-4

9.2.1.4 Parameters Affecting Fault Tolerance in the
External Hardware 9-4

9.2.1.5 Transient Fault Recovery Parameters .. 9-4

9.2.1.6 Permanent Fault Recovery Parameters 9-5

9.2.1.7 Modeling Parameters 9-5

9.2.2 Hardware-Aided-Software Configurations . . . 9-5

9.2.2.1 Physical Parameters 9-5

9.2.2.2 Software Characteristics 9-6

9.2.2.3 Parameters Affecting Fault Tolerance in the
Computers 9-6

9.2.2.4 Parameters Affecting Fault Tolerance in the
External Hardware 9-6

9.2.2.5 Fault Recovery Parameters 9-6

9.2.2.6 Modeling Parameters 9-6

9.2.3 Mostly-Hardware Configurations 9-8

xii

RECONFIGURABLE COMPUTER SYSTEMS STUDY

FINAL REPORT

TABLE OF CONTENTS (Cont'd)

PAGE

9.3 GENERATION OF RESULTS 9-9

9.3.1 Assessed Configurations 9-9

S3 1 inQuintupex Cnfigurations . . - 9-9

9.3.1.2 Quadruplex Configurations 9-13

9.3.1.3 Triplex Configurations 9-13

9.3.2 Effect of Redundancy 9-22

9.3.3 Effect of Non-Unity Recoverability 9-24

9.3.4 Effects of Adaptivity 9-26

9.3.5 Effects of RETs 9-26

9.3.5.1 DRO Versus NDRO 9-26

9.3.5.2 Effects of BITE 9-32

9.3.5.3 Effects of Diagnostics 9-34

9.3.5.4 Codes and I/0 Wraparound 9-34

9.3.5.5 Reasonableness Tests and Sensor Redundancy
Management 9-35

9.3.5.6 Voters, Adaptive Voters, and Comparators . . 9-38

9.3.5.7 Dedicated/Non-Dedicated I/0 Units 9-39

9.3.5.8 Independent Hardware Monitor 9-39

9.3.6 Effects of Transients 9-40

9.3.6.1 Introduction of Transient Recovery 9-40

9.3.6.2 Transient Recovery Algorithms 9-40

9.3.6.3 Influence of Transient Duration 9-41

9.3.6.4 Influence of Bursts of Transients 9-41

9.3.7 Scheduling Effects 9-42

xiii

RECONFIGURABLE COMPUTER SYSTEMS STUDY

FINAL REPORT

TABLE OF CONTENTS (Cont'd)

PAGE

9.4 CONCLUSIONS 9-45

REFERENCES

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

RECONFIGURABLE COMPUTER SYSTEMS STUDY

FINAL REPORT

LIST OF FIGURES

PAGE

1.1-1 EFFECTS OF RCS REDUNDANCY AND ADAPTABILITY ON FAILURE
PROBABILITY 1-3

1.7-1 SIMULATOR STATE DIAGRAM 1-17

2.1-1 MSW INTERNAL CROSS-CONNECTIONS 2-4

2.1-2 SYNCHRONIZATION AND VOTING SCENARIO 2-6

2.1-3 DEDICATED BUSSES. 2-14

2.1-4 NON-DEDICATED, SWITCHED BUS CONFIGURATION 2-18

2.1-5 VOTER MODULE LOGIC 2-22

2.1-6 INPUT - OUTPUT LOGIC - ADDITIONS 2-23

2.1-7 ERROR MODULE LOGIC - ADDITIONS 2-27

2.2-1 EXTERNAL HARDWARE INTERFACE: HARDWARE-AIDED SOFTWARE
CONFIGURATION 2-34

2.2-2 THE EXTERNAL ELECTRONICS MODULE (EEM) 2-37

2.2-3a RECOVERY SOFTWARE - (ROLLAHEAD) HARDWARE - AIDED
CONFIGURATION 2-42

2.2-3b RECOVERY SOFTWARE - (MEMORY COPY) HARDWARE-AIDED
CONFIGURATION 2-43

2.2-4 REDUNDANT EEM IMPLEMENTATIONS 2-46

2.3-1 AUGMENTED EEM FOR MOSTLY-HARDWARE CONFIGURATIONS . 2-51

2.3-3 AUGMENTED EEM RECOVERY ALGORITHMS 2-53

3.2-1 THE EXECUTIVE MODULES USE INTERMODULE CALLS FOR SERVICES
WHICH ARE REQUIRED BY ONE MODULE BUT PROVIDED BY ANOTHER . 3-3

3.3-1 EXECUTIVE SCHEDULING MECHANISM TYPICAL TIME LINES . . 3-9

3.3-2 COMPARISON OF EXECUTIVE SCHEDULING MECHANISMS . 3-11

4.2-1 QUADDED DIODES, d=l 4-7

PRECEDING PAGE BLANK NOT FILMED

xvi

RECONFIGURABLE COMPUTER SYSTEMS STUDY

FINAL REPORT

LIST OF FIGURES (Cont'd)

PAGE

4.2-2 COMPUTERS IN TMR CONFIGURATION 4-7

5.1-1 FAULT RECOVERY STATE DIAGRAM OF A TMR CONFIGURATION 5-3

5.3-1 PROBABILITY DENSITY FUNCTION OF THE TIME TO FAULT DETECTION 5-7

5.3-2 UNIFORM-EXPONENTIAL APPROXIMATION TO THE FAULT DETECTION TIME
DENSITY FUNCTION 5-9

5.4-1 FAULT RECOVERY MODEL OF A TMR CONFIGURATION 5-11

5.4-2 EXTENSION OF ENHANCED TMR MODEL TO N COMPUTERS . . . 5-21

5.4-3 FAILURE PROBABILITY FOR FIVE COMPUTERS 5-27

5.5-1 FAULT OCCURRENCE/RECOVERY STATUS STATE DIAGRAM FOR A DUPLEX
CONFIGURATION 5-33

5.5-2 FAULT OCCURRENCE/RECOVERY STATUS STATE DIAGRAM FOR 1-5
COMPUTER CONFIGURATIONS 5-35

5.6-1 MARKOV CHAIN EXAMPLE 5-43

5.6-2 STATE DIAGRAM FOR THE DUPLEX CONFIGURATION 5-51

6.2-1 SIMULATOR STATE DIAGRAM 6-5

6.2-2 GROSS ORGANIZATION OF THE SIMULATION 6-6

6.2-3 PRINCIPLES OF A FAULT DRIVEN SIMULATION (BOX 3 OF FIGURE
6.2-2) 6-7

6.2-4 RCS HANDLING OF FAULTS (BOXES 3, 4, 5 OF FIGURE 6.2-3) . 6-9

6.3-1 LIST OF INPUT PARAMETERS 6-11

6.4-1 SIMULATOR DETAILED STATE DIAGRAM 6-16

6.5-1 GENERAL ORGANIZATION OF THE FAULT GENERATOR 6-24

6.5-2 GENERATION OF THE OCCURRENCE OF THE FAULTS IN ONE MODULE
(POISSON DISTRIBUTION) 6-28

6.5-3 NORMAL OPERATION STATE I 6-29

6.5-4 ROLLAHEAD STATE II FLOWCHART 6-30

6.5-5 EXAMPLE OF DEDICATED BUS CONFIGURATION 6-37

xvii

RECONFIGURABLE COMPUTER SYSTEMS STUDY

FINAL REPORT

LIST OF FIGURES (Cont'd)

PAGE

6.7-1 SOFTWARE TMR WITHOUT MEMORY COPY 6-41

8.1-1 FAULT-TOLERANCE MEASURES CAN BE PRODUCED THROUGH A COMBINATION
OF ENGINEERING ANALYSIS, SIMULATION, AND ANALYTIC MODELING 8-2

8.4-1 CAST SUMMARY DIAGRAM 8-5

9.3-1 QUINTUPLEX FAILURE PROBABILITY VERSUS MISSION TIME FOR
NON-ADAPTIVE BUSSES 9-10

9.3-2 QUINTUPLEX FAILURE PROBABILITY VERSUS MISSION TIME FOR
NON-ADAPTIVE BUSSES 9-12

9.3-3 QUINTUPLEX FAILURE PROBABILITY VERSUS MISSION TIME FOR
ADAPTIVE BUSSES 9-14

9.3-4 QUADRUPLEX FAILURE PROBABILITY VERSUS MISSION TIME FOR
NON-ADAPTIVE BUSSES 9-16

9.3-5 QUADRUPLEX FAILURE PROBABILITY VERSUS EXTENDED MISSION TIME
FOR NON-ADAPTIVE BUSSES 9-17

9.3-6 QUADRUPLEX FAILURE PROBABIITY VERSUS MISSION TIME FOR
ADAPTIVE BUSSES 9-18

9.3-7 TRIPLEX FAILURE PROBABILITY VERSUS MISSION TIME FOR
NON-ADAPTIVE BUSSES 9-20

9.3-8 TRIPLEX FAILURE PROBABILITY VERSUS EXTENDED MISSION TIME FOR
NON-ADAPTIVE BUSSES 9-21

9.3-9 PROBABILITY VERSUS EXTENDED MISSION TIME FOR 5, 4, 3 AND 2
COMPUTERS 9-23

9.3-10 EFFECTS OF NON-UNITY RECOVERABILITY ON FAILURE PROBABILITY
FOR EXTENDED MISSION TIMES 9-25

9.3-11 EFFECT OF ADAPTABILITY ON FAILURE PROBABILITY FOR EXTENDED
MISSION TIMES 9-28

9.3-12 10-HOUR FAILURE PROBABILITY VERSUS TRANSIENT FAULT RATE 9-30

9.3-13 10-HOUR FAILURE PROBABILITY VERSUS TRANSIENT FAULT RATE 9-31

9.3-14 10-HOUR FAILURE PROBABILITY VERSUS TRANSIENT FAULT RATE 9-33

9.3-15 COMPARISON OF CODED SIMPLEX, DUPLEX AND TMR BUSSES . 9-37

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

xix

RECONFIGURABLE COMPUTER SYSTEMS STUDY

LIST OF TABLES

PAGE

1.3-I SOFTWARE OVERHEAD OF FAULT-TOLERANT CONFIGURATIONS . . . 1-9

1.7-I LIST OF RCS SIMULATOR INPUTS 1-18

1.7-II RCS SIMULATOR OUTPUTS 1-19

2.3-I SOFTWARE OVERHEAD OF FAULT-TOLERANT CONFIGURATIONS . . 2-48

3.5-I SOFTWARE EFFECTS ON v2"2 w 3-20

5.4-I SUMMARY OF EQUATIONS FOR THE TMR CONFIGURATION . . . 5-19

9.2-I LIST OF INPUT PARAMETERS FOR MOSTLY SOFTWARE
CONFIGURATIONS 9-3

9.2-II LIST OF INPUT PARAMETERS FOR HARDWARE CONFIGURATIONS 9-7

9.3-I SUMMARY OF QUINTUPLEX CONFIGURATION ASSESSMENTS . 9-11

9.3-II SUMMARY OF QUADRUPLEX CONFIGURATION ASSESSMENTS . . . 9-15

9.3-III SUMMARY OF TRIPLEX CONFIGURATION ASSESSMENTS 9-19

9.3-IV SUMMARY OF THE EFFECTS OF ADAPTABILITY 9-27

9.3-V LEAKAGE COEFFICIENTS 9-29

9.3-VI EFFECTS OF BITE 9-32

9.3-VII FAILURE PROBABILITIES AFTER 10 AND 100 HOURS FOR 4-MR
TMR WITH AND WITHOUT DIAGNOSTICS 9-34

9.3-VIII EFFECTS OF REASONABLENESS TESTS 9-36

9.3-IX EFFECTS OF NON-DEDICATED SENSORS 9-38

9.3-X EFFECTS OF SCHEDULING 9-43

PRECEDING PAGE BLANK NOT FILMED

xx

THIS PAGE INTENTIONALLY LEFT BLANK

xxi

LISTOF SYMBOLS AND ABBREVIATIONS

A Height of uniform portion of uniform-exponential density fT dt)

AEEM Augmented External Electronic Module

AGE Aerospace Ground Equipment

BITE Built-In Test-Equipment

CAST Complementary Analtyic-Simulative Technique

cT Transient coverage in TMR

DFBW Digital Fly-By-Wire

DFT Discrete Fault-Tolerance

DMA Direct-Memory Access

DT Transient duration

DUP Duplex - A two computer configuration

EEM External Electronics Module

EH External Hardware

F Set of failed machines

F System failure probability (1-S or 1-R).

FCS Flight Control System

FD Fault Detected

F Failure probability due to a permanent or transient fault
when in the one computer faulty state (TMR model)

FT Failure probability due to a fault during a recovery process
(TMR model)

fTd (t) Probability density function of the fault detection time

HASW Hardware-Aided Software

I/O Input-Output

MFP Mission Failure Probability (F)

MHW Mostly Hardware

xxii Ise

LIST OF SYMBOLS AND ABBREVIATIONS (Cont'd)

MSP Mission Success Probability (1-F)

MSW Mostly-Software

N Set of working and failed machines

NDRO Non-Destructive Read-Out

NMR N-Tuple Modular Redundancy

OR Output Ready

PI Program Integrity

PS Program Survivability -- synonymous with program integrity

RCS Reconfigurable Computer System

RET Reliability Enhancement Technique

ROM Read-Only Memory

RTI Real-Time Interrupt

S Survivability (1-F when transient faults are included)

SIM Simplex - A single computer configuration

STP Self-Test Program

T Mission time

Tc Time between state vector comparisons

Td Time between fault arrival and fault detection

TD Delay between fault detection and beginning of recovery procedure

TMR Triple Modular Redundancy

TMR-A Triple Modular Redundancy - Adaptive

TMR-E Triple Modular Redundancy - Enhanced

TMR-H Triple Modular Redundancy - All Hardware

TMR-HA Triple Modular Redundancy - Hardware Aided

TMR-S Triple Modular Redundancy - All Software

xxiii

LIST OF SYMBOLS AND ABBREVIATIONS (Cont'd)

T Recovery time T + Tr v w

TR Time to accomplish recovery procedure

T Total recovery time Tu + T + T

T Interarrival time between faults
T

T Time from fault occurrence to detection
u

Tv Time from fault detection to diagnosis

Tw Time from fault diagnosis to recovery

U Uniform random deviate between 0 and 1

ui Detectability with i operating computers

vi Diagnostibility with i operating computers

W Set of working machines

wi Recoverability with i operating computers

a Fault detection rate for exponential portion of the uniform-
exponential approximation to the fault detection time density

y Rate parameter for the duration of a transient fault

6 Fault detection rate for the exponential approximation to the
fault detection time density

K Ratio of transient to permanent fault rates T/X

x Permanent fault occurrence rate

a Leaky transient plus permanent fault rate X + zTT in TMR

Gi Permanent plus leaky transient rate with i operating computers
X+ i

at X +

au Uncovered transient plus permanent fault rate X + (l-cT)T in TMR

T Transient fault occurrence rate

- Non-leaky transient occurrence rate (1-ZT)

xxiv

LIST OF SYMBOLS AND ABBREVIATIONS (Cont'd)

Transient leakage with i operating computers

Transient leakage in TMR

xxv

1.0 SUMMARY AND INTRODUCTION

1.1 OBJECTIVE, ACCOMPLISHMENTS, AND CONCLUSIONS

1.1.1 Objective

The objective of this study was to provide concepts and engineering

data from which a highly-reliable, fault-tolerant, reconfigurable computer

system (RCS) for aircraft applications could be designed. For the purposes

of this study, an RCS is defined to be a redundant configuration of off-the-

shelf avionics computers which achieves fault-tolerance through use of a

variety of recovery techniques. A principal study goal was the development

and application of reliability and fault-tolerance assessment techniques.

Particular emphasis was placed on the needs of an all-digital, fly-by-wire

control system appropriate for a passenger-carrying airplane.

1.1.2 Accomplishments

The accomplishments of Contract NAS1-12793 are summarized in the

following five-item list.

1. A complementary analytic-simulative technique (CAST)

for calculation of predicted failure probabilities of

multicomputer systems was evolved.

2. Measures of fault-tolerance applicable to general fault-

tolerant computer systems were defined.

3. CAST was applied to 39 example computer system configura-

tions to provide insight into the important aspects of

these configurations, as well as demonstrate the efficacy

of the approach.

4. A set of customer-provided reliability-enhancement techni-

ques (RETs) was expanded and their individual effectiveness

was evaluated.

5. A set of control laws for a digital fly-by-wire flight

control system was translated into flow charts and computer

sizing and timing for these were estimated (see Appendix A).

1-1

1.1.3 Conclusions

The conclusions reported below were obtained by use of CAST.

They are based on a ten-hour flight and failure rates thought to be applicable

to the off-the-shelf avionics computers studied. The reconfigurable computer

systems were assumed to be composed of as many as five machines.

As shown in Figure 1.1-1, the greatest improvement in system

survivability is obtained by increased redundancy. Each increment of redun-

dancy decreases the i0-hoiur TdiIlu.re probabilLty by apprI nILateIy LWU UorIer

of magnitude. The greatest failureprobability decrease occurs when changing

from triplex to quadruplex, e.g., a 200-fold improvement. Increasing redun-

dancy also increases cost in terms of power, weight, and volume not only due

to the added units but due also to the increased complexity of intercommunica-

tions modules, external electronics modules, and bus switches.

Increasing redundancy has diminishing returns if there are errors

in permanent-recovery algorithm design. This error penalty becomes more

severe with added redundancy. Using simpler recovery algorithms, i.e., those

involving less RCS adaptivity, is a possible way of ensuring error-free recovery.

However, the increase in failure probability for air-transport-type missions

due to decreased adaptivity '(e.g., not adapting the system down to one computer)

is less than that caused by decreased redundancy or recoverability.

Since redundancy has such a large effect on failure probability,

external hardware should have an equivalent redundancy to prevent external

failures from depressing the overall survivability.

The techniques reported here devote much attention to the modeling

of transient faults. The results show that.a knowledge of the transient

environment results in effective transient recovery features. Underestimating

transient duration results in many transients being recorded as permanent,

while overestimating transient duration leaves the system unduly vulnerable

to further faults.

Finally, subject to the qualifications and assumptions described in

the first paragraph of this subsection, configuration assessment has shown that

hardware-aided software configurations provide a lower probability of failure

than mostly-hardware or mostly-software configurations.

1-2

Mission Time (Hours)

-1 1 10 100 100010'

implex

10-2 ./

10- 3
10

MR

-4

10

Tr j
3 IL_-- I

o 10-5

.. . . -. :..
W. , u _

LL-3

:- s

10I .2 /----- ------- --

10 ------ 1 1

EFFECTS OF RCS

S.REDUNDANCY ANDADAPTABILITY

ON FAILURE PROBABILITY

T r i .. * I I I : :-- Ii --

o-'

1 10 100 1000

Mission Time (Hours)

1-3

1.2 INTRODUCTION

The configuration types to which CAST is applicable are symmetrical

configurations of five or fewer, synchronized computers. The term symmetrical

is used here to indicate that no one of the computers is used in a supervisory

or executive mode. Each of the computers executes the same program in synchro-

nism with the other machines. The synchronism may be "loose," or tight,"

depending on the mechanization of the configuration, i.e., the configuration

may be one in which the fault-tolerance functions are implemented largely in

software, they may be implemented in a software-hardware combination; or they

may be implemented mostly in hardware. For all of these, the mechanisms for:

the obtaining of input data from the sensors; the error-detection process;

and the supplying of outputs to the actuators are considered to be part of

the configuration. Consideration of software reliability was not considered

to be within the purview of this study.

The architecture of fault-tolerant computing systems is heavily

influenced by the key requirements of reliability, maintenance intervals,

time for fault recovery, structure of the computations to be performed, and

cost or maximum allocation of power, weight, and volume. The avionics applica-

tion of this study is characterized by the following salient attributes:

1. Extreme Reliability Requirements, including "fail-safe"

capability - lives are endangered upon failure.

2. Short Inter-Maintenance Interval - flights seldom exceed 10

hours.

3. Short Fault-Recovery Time - on the order of milliseconds

to prevent degradation of control functions.

4. Moderate Computational Requirements - real-time control,

well within the capacity of candidate machines.

5. Ample Power, Weight and Volume Allocations - a number of

redundant computers may be employed.

To meet the reliability requirements of the avionics application
it is necessary to attain a very high value of "coverage" in the computer
design. It has been shown, that coverage, defined as the conditional prob-
ability, given that a fault occurs, that the fault is properly detected

1-4

and the subsequent "recovery" is successful, is the most sensitive parameter

affecting the reliability of a fault-tolerant digital system. With imper-

fect coverage, addition of redundant units gives little increase in reliability.

For the aircraft application, coverage must closely approach unity in order

to meet the stringent reliability requirements.

As a consequence of the high coverage requirement, a preferred

approach to fault-tolerant computer configurations is massive redundancy.

That is, performing the same computations with several computers and

comparing their outputs in order to provide nearly perfect fault detection

and isolation. When this approach is coupled with a sound recovery algorithm,

high coverage is assured. This approach has obvious cost advantages if

off-the-shelf computers, with minimal internal modifications and external

supporting hardware, can be utilized. Not only can development costs be

saved, but also support software and test procedures can be procured with

the computers.

1.3 SYSTEM ORGANIZATION CONCEPTS

During the RCS study general models and specific examples of

fault-tolerant computer configurations which are appropriate for implemen-

tation using "whole" computer massive redundance were formulated. These

models are sufficiently general to serve as the basis for discussion of

various redundancy options and reliability enhancement techniques. The

more promising options for each configuration were modeled analytically and

simulated to determine their effectiveness.

Three general categories of configurations utilizing "whole"

computer redundancy were formulated. The first, termed the mostly-software

approach, utilizes software for fault detection, voting, recovery and

synchronization. External hardware is held to a minimum. The second, the

hardware-aided software approach, shares fault detection and recovery between

software and external hardware which supplies fault detection and voting.

The third, the mostly-hardware approach, utilizes hardware to perform

fault detection and recovery with the goal of minimizing the amount of

special software required for fault-tolerance. These categories of con-

figurations were examined in detail during the study.

1-5

1.3.1 "Mostly" - Software Configurations

The salient feature of "mostly" software (MSW) configurations is

that external hardware is held to a minimum. Comparison of outputs for

fault-detection and isolation is carried out by software. The interconnect-

ing and synchronization techniques, as well as techniques for fault detection.

and recovery are quite similar for configurations of three or more computers.

And thus a general model is presented which is inclusive of systems with

three four and five computers.

The simplest fault response is to ignore transients and for the

agreeing machines to ignore the subsequent outputs of the machines which

disagree. However, since transient correction is essential in meeting the

stringent reliability requirements of the avionics application, it was

necessary to examine more sophisticated recovery algorithms.

The recovery algorithms must respond to the following three

fault conditions.

1. Permanent Fault - In the case of a permanent fault a

transient recovery attempt will be unsuccessful and it

is necessary to recognize this condition, typically by

repeated disagreements, and terminate attempts at

transient recovery. The subsequent outputs of the machine

are ignored.

2. Transient Fault --Program Undamaged - There exist a

set of transient faults which can be corrected by one

of two simple procedures. One of these recovery techni-

ques, using segmented programs, is designated "rollahead".

The'second of these recovery techniques is called "roll-

back."

3. Transient Faults -- Program Damaged - Transient faults

which result in damage to instructions or constants stored

in memory, cannot be corrected by rollback, restart, or

rollahead techniques. Correction of these fault-effects

requires reloading memory, a process which results in a

much longer recovery time.

1-6

To effect transient recovery* a mechanism must exist for trans-

ferring correct information to the memory of the damaged computer. A salient

feature of the mostly-software configuration is that there is no hardware

mechanism by which agreeing computers can take control of the disagreeing

machine to force rollahead, update memories, etc. Thus even faulty computers

must have a limited degree of autonomy and, in order to provide transient

recovery, it was assumed that transient-damaged computers must maintain a

small interrupt handling routine in order to correct this class of faults.

If memory protection (addressing interlocks) and NDRO technology

is employed, a majority of transient faults will be rollahead or rollback

correctable. However, unless ROM is employed for instructions and constants,

there remains a probability of transients which require memory copy techniques

for correction. Thus rollahead techniques should be backed up with the

capability of copying memory contents to provide adequate coverage. A

typical hybrid transient correction approach would be (1) attempt rollahead,

then if a disagreement recurs, (2) attempt memory copy, and if fault still

persists, (3) consider the computer to contain a permanent fault.

The I/0 structure of the mostly-software configurations must provide:

1. Communication with sensors and activators;

2. Masking of faulty computers;

3. Precisely timed events from commands from computers

which may be unsynchronized by a number of microseconds;

4. Redundancy and single-point-failure protection within

the I/0 structure.

Avionics systems typically contain sensors and actuators at

widely separated locations. The recent trend has been to employ highly

multiplexed I/0 on order to reduce weight and complexity associated with

cabling. Thus bus models were assumed in the analysis of I/0 structures.

It was assumed that two or more redundant busses are employed with a

number of redundant interfaces. Two types of bus structure were considered.

Transient recovery is defined as a recovery effected by the subsystem such

that the number of properly operating computers and their identities before

the fault occurrence and following the recovery are the same.

1-7

The first utilizes a bus dedicated to each of the computers with synchroni-

zation and voting performed in the peripheral units. The second treats

the redundant bus structure as an integral unit in which voting, synchroni-

zation, and bus redundancy management is carried out by a special bus con-
troller. In this case, individual busses and peripheral devices are not
dedicated to any specific computer.

1.3.2 Hardware - Aided Software Configurations (HASW)

Hardware-aideu .conliurations are characterized by the use of

external hardware for fault-detection and synchronization. The goals of
this approach are to (1) increase speed of computation and simplify software

by performing the task of comparing state vectors and outputs in hardware,
and (2) to allow the use of off-the-shelf computers with minimal I/0 facilities.

The set of N computers is connected to a set of I/0 busses through a
special External Hardware Interface. This interface may be a single, massively-
redundant structure or a set of identical modules dedicated to either individual
computers or busses. The non-redundant building-block element of the external
hardware interface is designated the External Electronics Module (EEM). The
EEM accepts and buffers outputs from the computers, synchronizes the machines,
provides voting for outputs, provides for inter-computer communications, and
buffers returning inputs.

In order to effect transient recovery, a communication path must

be established such that the agreeing computers can enter data into the

memory of the faulty machine and command its restart. An adaptive voting

capability is utilized within the EEM to allow this intercommunication.

Transient recovery algorithms are similar to those used in the MSW configura-
tions.

System failure occurs in the HASW configurations when all but
two computers have failed and one of the remaining computers suffers either
an uncorrectable transient or a permanent failure. When two computers remain
functional, this condition is designated the Residual Duplex Configuration.
Techniques for recovery from failures in the residual duplex configuration
and continuing computation with a single simplex computer were developed
during the study.

1-8

1.3.3 Mostly-Hardware Configurations

Mostly-hardware configurations are structured in such a way as

to minimize the amount of software required to support fault detection and

recovery. Table 1.3-I indicates the additional supporting software functions

employed in software, hardware-aided and mostly-hardware configurations.

Mostly- Hardware-Aided Mostly-
Software Software Hardware

Fault Detection by Comparison X

Synchronization X

Transient Recovery X X

Recording and Masking Perma- X X
nently Faulty Modules

TABLE 1.3-I SOFTWARE OVERHEAD OF FAULT-TOLERANT
CONFIGURATIONS

The special software features associated with hardware-aided con-

figurations are:

1. Rollback/Rollahead structured programs.

2. Identifying recurring faults and the decision to employ

rollahead, memory copy, or classify a computer as permanently

faulty.

3. Control of data transfers for rollahead and memory copy.

4. Disabling (fault response) faulty machines.

5. Diagnostic programs for recovery when only two computers

remain functional.

6. A "warm" restart capability. A restart point at which

computation can be resumed with a minimum of variables

required for initialization. (Employed to minimize

downtime for transfer of variables at the end of a

memory copy.)

1-9

Mostly-hardware configurations perform the functions associated

with the previously discussed hardware-aided software configurations along

with implementing one or more of the above functions in hardware.

The principal difference'between the mostly hardware and hardware-

aided software configurations is that in the former the system state infor-

mation and recovery decision mechanism resides in a central "hard core".

1.4 EXECUTIVE STRUCTURE

Four design goals were established for the executive. These

goals specify general guidelines for the executive design as well as in-

dicating a particular application in which the executive could be used.

These goals are to design an executive which:

1. Can be readily adapted as an executive model for all

RCS configurations under consideration.

2. Is general enough to support any reasonably foreseeable

avionics application.

3. Makes clearly visible all the features required to

support a digital flight control application.

4. Makes available the necessary parameters for configuration

evaluations.

Since this study is directed toward multicomputer systems rather

than encompassing multiprocessors, a single executive can be designed for

use in each of the computers of the configuration. Thus, the first design

goal ensures that the executive which is designed can be used in all computers

of all configurations being considered, adapted as required by the configuration.

The computational environment imposed by air transport applications

is such that the majority of computations must be performed periodically, al-

though the computations performed will vary with the phase of the flight and

the mode(s) used. Thus the computational requirement imposed by the avionics

environments in which the computer systems being considered will operate

involves primarily periodic, cyclical tasks of varying complexity, rate, and

1-10

duration. The processing of occasional aperiodic tasks is also required. The

executive has been designed to meet both of these requirements and thus be

generally applicable to all avionics applications.

The executive skeleton consists of four distinct modules, each

providing one of the four basic facilities required in an executive for an

avionics computer. The four modules are the scheduler, the input-output

driver, the interrupt processor, and the machine error handler.

The choice of a scheduling mechanism for an executive is the

single most important decision in the design. The selection of the scheduling

mechanism affects other modules in various degrees. For the avionics applica-

tion, there exists a complete spectrum of executive scheduling mechanisms

ranging from totally synchronous to constrained asynchronous.

The scheduling mechanisms considered can be differentiated by the

following three characteristics:

1. Fixed vs variable processing time intervals;

2. Fixed vs variable task execution order;

3. Polled vs interrupt-driven aperiodic event registration.

The synchronous executive, while limited in terms of flexibility and

growth, is conceptually very simple and its behavior is completely predictable.

The synchronous mechanism utilizes fixed time intervals, fixed execution order,

and polled aperiodic event registration. The constrained-asynchronous mechanism

is the most flexible scheduling mechanism usable for an avionics application.

The constrained-asynchronous executive schedules tasks on a demand basis. It

thus provides a more flexible structure which permits growth to be achieved

more easily. This mechanism utilizes variable processing intervals, variable

task execution order, and interrupt registration of aperiodic events (even

during periodic processing). There are a number of intermediate designs which

utilize various combinations of the above approaches.

Thus it can be seen that the scheduling mechanisms considered range

from the synchronous in which everything is fixed to the constrained asynchronous

where everything is variable. The synchronous mechanism is the easiest to

verify because everything is fixed. As more asynchronism is introduced, veri-

fication becomes more and more difficult because of more and more variability.

1-11

The asynchronous mechanism, in which almost everything is variable, can never
be totally verified because the number of combinations of events is very large.
All that can be done is to test all branches in a reasonable number of ways.

The choice of an executive scheduling mechanism is made on the basis
of the environment, the machine capabilities, and the applications programs
requirements. Once the choice of an executive scheduling mechanism is made,
the other portions of the executive can be considered. In the HASW configura-

tins this information and cVonIrol mechanism is distributed and replicated

within the software of the individual computers. The tradeoff between the two
implementation types is largely a matter of cost.

Implementation cost in the mostly hardware case includes not only
augmentation of the EEM units, but also a mechanism for protecting against
and correcting transient errors in the augmented EEMs. A process of voting
on all internal states (NMR synchronization) is required as well as a well-
defined AEEM restart in case of information loss. To protect against tran-
sients it is advisable that the AEEM control states be maintained in non-
volatile storage. Thus the augmented EEM is considerably more complex than
the HASW EEM without augmentation.

1-12

1.5 MEASURES OF FAULT-TOLERANCE

Reliability theory defines the reliability of a system as the prob-

ability of correct operation up to the "mission time", T, given that the system

was operating correctly at the mission starting time. The work on measures

of fault-tolerance applicable to an RCS is based on the fact that computer

systems are a special case among all physical systems because in their case

"correct operation" means the correct execution of a set of programs, rather

than the continued functioning of a set of components of the system.

The following four criteria form an operational definition of

"correct execution of a set of programs:"

1. The program and their data are not altered or halted

by faults;

2. The results of operations do not contain fault-caused

errors;

3. The execution time of each program does not exceed a

specified limit;

4. The storage capacity that is available for each program

remains above a specified minimum value.

There are three distinct quantitative measures that can be applied

to measure the fault-tolerance of a computer system. They are:

1. The Discrete Fault Tolerance d

2. The Reliability R(t)

3. The Survivability S(t)

The discrete fault tolerance (DFT) d is a deterministic measure
that specifies how many faults of a given class can be tolerated by a computer
system or by a module of the system. The remaining two measures - reliability
R(t) and survivability S(t) - are probabilistic measures that predict the
probability of the system continuing its correct operation over a specified
time interval.

DFT is defined as the ability of a Module Set M to operate correctly
for at least d faults within the Module Set. It is important to note that

1-13

DFT is not a function of time, i.e., the probability of continued correct

operation is stated to be unity as long as not more than d faults from the

fault set occur within the module set M.

The reliability R(t) also refers to a set F of permanent faults that

can occur in the hardware module set M. It is defined as the probability that

the set M will not experience a disabling hardware failure during a specified

"mission time" interval O0tT.

It is known from experience that computer systems are also subject

to transient faults, which can terminate the correct execution of a set of

programs without causing a disabling hardware failure in the module set M i.

Our goal was to incorporate the survival probability with respect to the

occurrence of transient faults into one probabilistic measure of fault-

tolerance that also contains the reliability R(t). This measure is called

the survivability S(t) of the module set M .

Previous work has established that three fault-tolerance activities

must be successfully executed before the system returns to its functional

state after a fault event. It was found convenient to partition the probability

of successful system response to a fault into three components:

1. Detectability, denoted by u and defined as the probability

that fault is detected, given that it occurs;

2. Diagnostibility, denoted by v and defined as the probability

that the faulty module is correctly identified, given that

the fault has been detected;

3. Recoverability, denoted by w and defined as the probability

that the operational state is successfully re-established,

given that the fault has been located.

Thus the survivability S(t) is seen to be an overall measure of

fault-tolerance of a computer system, while detectability, diagnostibility,

and recoverability give detailed insight into the system behavior and can be

used for more precise specification of the fault-tolerance desired in a computer

system.

1-14

1.6 ANALYTIC MODELING

The analytic modeling effort was directed toward the specific

inclusion of transient faults and the inclusion by use of parameters, of

the software structure and the system failure criteria.

The problem was approached by preparing state diagrams representing

the fault/recovery status of the system. Transient faults were assumed to

arrive at an average rate T which is constant over the life of the system.

Similarly, based on physical reasoning and mathematical tractability, an

exponential density function was chosen to represent transient duration.

The three-stage transient recovery sequence, consisting of detection,

recovery-start delay, and recovery, was formulated and the necessary parameters

defined. The concept of imperfect detection was formalized using a probability

density function of the detection time. An important concept, that of tran-

sient leakage, was formulated and defined. Transient leakage, xT, is the

probability that a transient fault is interpreted as a permanent.

The modeling of specific computer systems was begun by considering

an enhanced TMR configuration. An enhanced TMR systems possesses the capability

of recovering from a transient fault. Following the obtaining of the results

for the enhanced TMR system, the work was extended to N computers, first

considering the case involving a linear degradation of the system (i.e. 5

computers to 4 computers to 3, etc.), and then formulating the more general

case where an N-computer system can go directly to the system failure state.

A recursive expression for the survivability of an N-computer configuration

was developed and then, by mathematical induction, it was shown that the

survivability can be expressed as a linear combination of exponential functions.

An iterative expression was then developed for determining the coefficients

for the linear combination.

The final aspect of the analytic modeling was the formulation of

a model using the Markov chain analysis method. By assuming that state transi-
tions occur continuously, it was possible to develop a vector differential
equation representing the system and obtain an expression for the state
probabilities at time t. As was to be expected, the results agreed with
those obtained earlier. However, they provide the basis for a set of simply-
formulated computer programs which are useful in obtaining numerical results.

1-15

1.7 SIMULATION

The function of the simulator developed during this contract is

to produce: 1) parameters for use in analytic models of RCS; 2) the

fault-tolerance effectiveness of each of a wide variety of RCS configurations;

and 3) the behavior of a configuration in various fault environments.

The general organization of the simulator was formulated so that

the end-product would be versatile and flexible. An efficient simulation

was dev eopeu by designing a "fault-driven simulator, rather than one

that simulates the continuous operation of the system. The simulator was

written in FORTRAN IV and currently runs on a CDC-6600 computer.

The approach taken to the formulation of the simulator is similar

to that utilized in the analytic modeling in that a state diagram is used

to describe the programs requirements. A simplified state diagram is shown

in Figure 1.7-1.

The simulator program is structured to simulate the detection of

faults within a computer system and the computer system's successful/unsuccess-

ful recovery actions taken in response to the detected faults. Each simulated

mission is assigned a mission time. A simulation run consists of the repeti-

tive continued simulation of a designated number of missions (each with the

same mission time). As stated earlier the simulation is fault-driven. Nothing

happens in the simulator until a fault occurs. This is very important in

terms of simulator efficiency. The computer time spent in one run is

roughly proportional to the number of faults and not to the simulated mission

time.

A good measure of the detail included in a system simulation is the

number of parameters that must be specified for each run. It can be seen from

Table 1.7-I that the RCS simulator is very detailed. The outputs produced by

the simulator are listed in Table 1.7-II. As can be seen from this table,

outputs are provided to the user that give detailed insight into the system

behavior.

1-16

INTRODUCTION DUPLEX MEMORY SYSTEM
OF A OPERATION COPY FAILURESPARE

ROLLBACK DIAGNOSIS SIMPLEX ROLLBACK
IN OPERATION IN

DUPLEX SIMPLEX

FIGURE 1.7-1 SIMULATOR STATE DIAGRAM

TABLE 1.7-I LIST OF RCS SIMULATOR INPUTS

NUMBER OF SIMULATED MISSIONS

MISSION DEPENDENT PARAMETER

Mission Time

MACHINE DEPENDENT PARAMETERS

Permanent Failure Rates

BITE Detection Probability of a CPU Fault
BITE Detection Probability of a Memory Fault
Self-Test Program Efficiency
Self-Test Program Duration

CONFIGURATION-DEPENDENT PARAMETERS

Number of Computers
Number of Spares
Dedicated/Non-Dedicated EEMs (External Electronic Modules)
Probability that an EEM Fault Hits the Bus
Number of Non-Dedicated EEMs
Dedicated/Non-Dedicated Busses
Number of External Devices
Coverage and Relative Failure Rate of each Device and

of the Busses
Applicable Recovery Algorithms
Recovery Algorithm Characteristics
Duration
Unacceptable Recurrence Interval
Maximum Number of Rollbacks
Program Integrity
Memory-Copy Efficacy

SCHEDULING PARAMETERS

Iteration Period
Time Between Comparisons
Major and Minor Cycle Durations
Asynchronous/Synchronous Mechanism

ENVIRONMENT DEPENDENT PARAMETERS

Transient Failure Rates
Transient Failure Duration

1-18

TABLE 1.7-II RCS SIMULATOR OUTPUTS

NUMBER OF SYSTEM FAILURES

CAUSES OF SYSTEM FAILURES

Excessive-Length Recovery
Non-Isolated Faults
Simplex Mode Failures
EEM Failures
I/O and Bus Failures

NUMBER OF SWITCHES TO - Quadruplex

- Triplex

- Duplex

- Simplex

TRANSIENT COVERAGES IN MULTIPLEX, DUPLEX, SIMPLEX

DIAGNOSTIBILITY IN DUPLEX

PROPORTION OF CATASTROPHIC FAULTS

NUMBER OF MISSED ITERATIONS

1-19

1.8 COMBINED ANALYTIC-SIMULATIVE TECHNIQUE

The analytic modeling approach described in Section 1.6 and the

simulation technique described in Section 1.7 each has its strengths and

limitations. However when these two system evaluation approaches are

combined, and supplemented by some engineering analysis, a very powerful

technique results.

This Complementary Analytic-Simulative Technique (CAST) evolved

as it became evident that neither analysis nor simulation alone could satisfy

all the RCS evaluation requirements. Analytic modeling provides flexibility

and rapid, economical data-generation. However the solutions for some configu-

rations are very cumbersome and in certain cases the mathematical model formu-

lated is intractable. Simulation permits computer system details to be in-

cluded easily, but data generation is slow and expensive. CAST permits the

user to obtain the best features of both analytic modeling and simulation.

The RCS engineering analysis is performed to provide six categories

of information to the analytic modeling and the simulation. These information

categories are:

1. Configuration Particulars

2. Fault Environment

3. System Failure Criteria

4. Software Structure

5. Recovery Features

6. Test Features

The results produced by the simulator are:

1. Permanent-fault coverage

2. Transient-fault coverage

3. Detectability

4. Diagnostibility

5. Recoverability

1-20

1.9 RECOMMENDATIONS

Based on the work summarized here and repotted in detail in

Sections 2 through 9, the following two actions are recommended.

1. Apply CAST to a specific configuration of interest.

The combined analytic-simulative technique should be

applied to a specific aircraft or spacecraft applica-

tion that requires a highly reliable computing capability.

Preferably this would be an application that has progressed

far enough in the preliminary design stage so that the

software structure has been formulated, application pro-

gram size and execution times have been estimated, sub-

system failure criteria have been postulated, and specific

sets of sensors and actuators have been selected. Applica-

tion of CAST to a specific system will illustrate its

utility.

2. Introduce additional complexity into the analytic model

in order to reduce the cost of the necessary simulation

runs. The complexities to be considered are:

a. Spare computers;

b. Dedicated busses;

c. Recovery-procedures complexity;

d. Explicit failure criteria;

e. Software structure; and

f. Burst-fault environment.

1-21

THIS PAGE INTENTIONALLY LEFT BLANK

1-22

2.0 SYSTEM ORGANIZATION CONCEPTS

The architecture of fault-tolerant computing systems is heavily

influenced by several key requirements of their application. Among these

are: 1) reliability, 2) maintenance intervals, 3) time for fault recovery,

4) structure of the computations to be performed, and 5) cost or maximum

allocation of power, weight, and volume. The avionics application of this

study is characterized by the following salient attributes:

1. Extreme Reliability Requirements, includinq "fail-safe"

capability - lives are endangered upon failure.

2. Short Inter-Maintenance Interval - flights seldom exceed

10 hours.

3. Short Fault Recovery Time - on the order of milliseconds

to prevent degradation of control functions.

4. Moderate Computational Requirements - real-time control,

well within the capacity of candidate machines.

5. Ample Power, Weight and Volume Allocations - a number of

redundant computers may be employed.

In order to meet the reliability requirements of the avionics appli-

cation it is necessary to attain a very high value of "coverage" in the computer

design. It has been shown, both by analytic means and by simulation, that the

most sensitive parameter affecting the reliability of a fault-tolerant digital

system is "coverage", defined as the conditional probability, given that a

fault occurs, that the fault is properly detected and the subsequent "recovery"

is successful. [BOUR 69]. In many cases it can be shown that increasing coverage

by 1% can improve the reliability of a fault-tolerant computer to a greater

extent than using an additional spare computer. Conversely, with imperfect

coverage, addition of redundant (spare units) gives little increase in reliability

For the aircraft application, coverage must closely approach unity in order to

meet the stringent reliability requirements.

As a consequence of the high coverage requirement, a preferred approach
to fault-tolerant computer configurations is massive redundancy. That is,
operating several computers to perform the same computations, and comparing

2-1

their outputs in order to provide nearly perfect fault detection and isolation.

When this approach is coupled with a sound recovery algorithm, high coverage

is assured. This approach has obvious cost advantages if off-the-shelf compu-

ters, with minimal internal modifications and external supporting hardware, can

be utilized. Not only can development costs be saved, but also support software

and test procedures can be procured with the computers.

The purpose of this section is to provide general models and specific

examples of fault-tolerant computer configurations which are appropriate for

implementation using "whole" computer massive redundancy. The models are

intended to be sufficiently general to serve as a basis for discussion of

redundancy options and reliability enhancement techniques. The more promising

options for each configuration will be modeled analytically and through

simulation to determine their effectiveness.

Under the constraints of 1) little or no modifications to the off-

the-shelf computer elements, and 2) application of redundancy at the "whole"

computer level, there are three key interfaces to the digital computer for its

implementation into a redundant configuration. These are: 1) I/0 interfaces

including interrupts and AGE, 2) software, and 3) synchronization (which,

though not an explicit physical interface, bears heavily upon the design of

the configuration).

There are three general categories of configurations utilizing

"whole" computer redundancy. The mostly-software approach utilizes software

for fault detection, voting, recovery and synchronization. External hardware

is held to a minimum. The hardware/software approach shares fault.detection

and recovery between software and external hardware which supplies fault detec-

tion and voting. The mostly-hardware approach utilizes hardware to perform

fault detection and recovery with the goal of minimizing the amount of special

software required for fault-tolerance. The following sub-sections are directed

toward an examination of these categories of configurations.

2.1 "MOSTLY"-SOFTWARE REDUNDANT CONFIGURATION (MSW)

The salient feature of mostly-software configurations is

that external hardware is held to a minimum. Comparison of outputs for fault-

detection and isolation is carried out by software. The interconnecting and

synchronization techniques, as well as techniques for fault detection and

2-2

recovery are quite similar for configurations of three or more computers. And

thus a general model is presented which is inclusive of systems with three,

four and five computers.

Mostly software configurations are characterized by 1) inter-computer

communications utilized for fault-detection, transient recovery, and synchroni-

zation, and 2) a redundant I/O structure which can convey "correct" information

to and from peripheral devices in the presence of computer or I/O faults. These

two characteristics tend to define the MSW redundant configurations which are

described below:

2.1.1 Internal Communications for Fault Detection and Transient Recovery

The internal cross-connections associated with software redundant con-

figurations are shown in Figure 2.1-1. Each computer generates data and control

outputs which are made available to the other N-l machines. It is assumed that

synchronization is carried out by software and that exactly-synchronized clocks

for data transfers cannot be guaranteed. (The candidate computers employ

asynchronous memory cycles, an attribute which does not allow synchronizing

clocks without internal hardware modifications). The following is a description

of the two sets of internal cross-connections.

1. Data Transfer Paths - It is necessary to transfer outputs,

and state variables generated within program segments,

between computers for checking and voting by software.

The data paths employed can be implemented in one of

several fashions, each of which can tolerate the lack of

clock synchronization:

a. Parallel (Held) - Each computer's output remains

until sampled by other computers.

b. Serial or Parallel (Transmitted) - Output is sent

to latching registers within the receiving computers

for synchronization.

c. DMA transfer facilities between computers under

control of the outputting modules. Software

synchronization is only necessary for initiation

(or completion) of a block transfer. Individual

2-3

COMPUTER

COMPUTER

2

TWO SETS OF CONNECTI4S
COMPUTER (1) DATA PATHS

3 (2) CONTROL SIGNALS

COMPUTER

N

FIGURE 2.1-1 MSW INTERNAL CROSS-CONNECTIONS

2-4

word transfers are transparent to the software.

(This approach is expensive in hardware but offers

the more rapid comparison/voting process).

2. Control Signals - It is necessary for each computer to

supply the other machines with control signals for

synchronization and fault recovery. Examples of control

signals are 1) output ready, 2) fault detected, etc.

An example of the comparison and synchronization process is given

in the following paragraphs.

2.1.1.1 Voting and Synchronization

The following description of voting and synchronization is centered

around the activities of properly functioning processors. It is assumed that

there is a set of N processors, each programmed to performean identical compu-

tation, loosely synchronized within a few instructions of each other. The

properly functioning computers comprise the subset W and have stored internally

the identity of the working machines W and that of the.machines assumed to have

failed F. (N=WUF). A vote Vi(W,F) is performed in each of the properly

functioning computers which provides: 1) a voted result Vr or an indication

of indeterminable output (such as when all inputs disagree), and 2) an indi-

cation of one or more disagreeing units d.. A number of voting algorithms

are possible, e.g. NMR, hybrid, adaptive, etc..

A typical scenario of the voting and synchronization process is in-

dicated in Figure 2.1-2. When any properly functioning computer reaches a

point in the program where comparison of results is required, it transfers

its values to the other computers and waits for one of two events:

1. The other working computers complete the transfer

indicated by their Output Ready (OR) levels or,

2. A time-out overflow occurs.

In either case a vote is taken on the transferred information in all the

properly functioning computers in the set W. If all the computers agree with

the voted result, computations continue else a corrective action is taken.

This approach corresponds to the fault exit in Figure 2.1-2.

2-5

COMPUTER i

REACHES COMPARISON
POINT IN PROGRAM

COMPUTER i TRANSFERS
INFORMATION TO BUFFERS
lIN THE OTHER CO rPUTADISD

SET TIME-OUT COUNTER

ALL COMPUTERS
IN w INDICATE TIME-OUT
COMPLETION OF TRANS- COUNTER
FER BEFORE TIME-OUT OVERFLOW
COUNTER OVERFLOW

PERFORM VOTE
Vi (W,F)

ALL COMPUTERS NO GO TO
AGREE? * FAULT

YES HANDLER
YES PROGRAM

CONTINUE
PROGRAM

FIGURE 2.1-2 SYNCHRONIZATION AND VOTING SCENARIO

2-6

The simplest fault response is to ignore transients and for the

agreeing machines to delete the machines which disagree from the set W and

to ignore their subsequent outputs. However, since transient correction is

essential in meeting the stringent reliability requirements of the avionics

application, it is necessary to examine more sophisticated recovery algorithms.

2.1.1.2 Transient Recovery Techniques

The condition which causes a computer in the set w to be in disagree-

ment with the other machines is either 1) an erroneous computation, or 2) the

disagreeing machine has gotten out of step with the others. It is useful to

classify the causes of this condition into the following three categories and

list the implications of each on the transient recovery process:

1. Permanent Fault - In the case of a permanent fault a

transient recovery attempt will be unsuccessful and it

is necessary to recognize this condition, typically by

repeated disagreements, and terminate attempts at

transient recovery. The machine is reclassified from

the set W to the set F and its subsequent outputs are

ignored.

2. Transient Fault -- Program Undamaged - There exist a set

of transient faults which can be corrected by either one of
two simple procedures, program rollahead and program rollback.
For both of these procedures, the program is segmented and
associated with each segment is a set of global variables

designated the State Vector. The state vector contains
necessary and sufficient input data to properly execute the
associated program segment. Furthermore the state vector is
not modified by its associated program segment (e.g. call by
value) such that the program segment can be re-started. During
correct computation of the Nth program segment, the state
variables for the next (N+lth) segment are generated (ROHR 73).

The first technique, designated "rollahead", takes advan-
tage of one or more "correct" machines. When a fault occurs
in a computer, the next state vector (including the location
counter) of the "torrect" machines is loaded into its memory

2-7

at the end of the program segment in which the fault occurred.

Since the corrected state vector corresponds to the variables

which are necessary to start the next program segment, the

faulty machine can be corrected without repeating the segment

in which the fault occurred. The desired outputs are available

from the correct machines.

The second of these recovery techniques is called "rollback".

In this case, if the computers disagree upon output or compari-

son of information the current program segment is re-started.

If the state vector and program have not been damaged, the

program segment will be executed correctly after the restart.

While program rollahead takes place nearly instantaneously,

program rollback results in a delay required to re-compute a

transient-damaged program segment. However, since rollback

does not require a transfer of information from "correct"

computers, it can be utilized in duplex configurations where

the "correct" computer cannot be immediately identified. Thus

rollahead is the preferred approach to correction of this class

of transient faults when three or more computers are functional.

Rollback is required in the residual duplex condition where

only two machines remain functional or when only one computer

is working.

3. Transient Faults -- Program Damaged - Transient faults

which result in damage to instructions or constants

stored in memory, cannot be corrected by rollback, restart,

or rollahead techniques. Correction of these faults requires

reloading memory, a process which results in a much longer

recovery time.

Memory address protection and NDRO memory are two RETs employed to

prevent transients of type (3) above, as well as to reduce the total number of

memory transients. The next section explores the implementation of transient

recovery techniques in software redundant configurations.

2-8

2.1.1.3 Transient Recovery - Implementation

In order to effect transient recovery a mechanism must exist for

transferring correct information to the memory of the damaged computer. A

salient feature of the software configuration is that there is no hardware

mechanism by which agreeing computers can take control of the disagreeing

machine to force rollahead, update memories, etc. Thus even faulty computers

must have a limited degree of autonomy and, in order to provide transient

recovery, it is assumed that transient-damaged computers must maintain a small

interrupt handling routine in order to correct this class of faults.

Two examples are given below of transient correction mechanisms

employed in the software-redundant configuration. Each requires three principal

actions:

1. The disagreeing computer must be notified that it is out of

step. It can ascertain this locally by performing a test at

the occurrence of each real-time interrupt (RTI), or can be

notified via interrupts from the other computers in w.

2. The "good" computers must effect transfer of correction

information.

3. The faulty computer must load this information and

re-synchronize with the other computers.

It is assumed that each computer has capability of loading compari-

son values into dedicated buffers in the other computers independent of the

program in those machines (e.g. DMA).

Program Rollahead

"Instantaneous" transient recovery can be achieved if segmented

programs are employed and rollahead is implemented. At the.end of each

segment of program, the state variables (those global variables utilized by

subsequent program segments) are exchanged and compared in the various computers.

If a computer in W suffers a transient fault during the program segment, which

does not damage instructions or constants, it can utilize the state vector from

the other machines and continue with the next program segment. The address of

the next segment must be included within the state vector to indicate the point

at which the faulty machine should commence execution.

2-9

The principal problem of the rollahead implementation is notification

of the faulty machine so that it can utilize the corrected state vector and

start the next program segment in step with the other machines. Three cases

exist:

1. If the machine has only data damage but is still in step

with the other machines, the software vote N.(W,F) will

indicate its disagreement and the program can automatically

choose the state vector sent from another machine in W and

continue.

2. If the machine is out of step and attempts a comparison before

the other machines, this condition can be recognized and a

wait initiated for access to the state vector from the other

computers and a subsequent rollahead.

3. If the machine is out of step and does not perform a comparison

with the others of state vectors, then it must be alerted to

this fact in order to execute the rollahead. This can be done

utilizing "fault detected" signals as interrupts in the

following fashion.

Each computer generates a "fault detected" (FD) signal

which is received as an interrupt by the other computers.

This interrupt is permanently masked (by all computers in

w) from computers designated as failed (F).

Prior to performing a comparison, each computer masks out

the FD interrupts. If after completion of the transfer, one

computer fails to respond with an output ready (OR) signal,

the other computers send the FD signal, thus notifying the

computer which is out of step. The validity of these inter-
rupts can be verified by the interrupted computer by checking

for several OR signals.

Thus the idea of this approach is:

a. A computer not in or near the process of comparison

enables FD interrupts from the other machines.

2-10

b. If the other machines perform a comparison without

activity from one or more machines their FD interrupts

are raised.

c. Erroneous FD interrupts are identified and masked

by verification of output-ready signals.

A machine which is alerted as to being out of step can utilize the

state vector from the other computers to perform a rollahead.

Memory Copy

At the occurrence of the RTI, the computers in set W, check the

results sent for comparison during the last minor cycle. If one of the compu-

ters has gotten out of step due to a transient, it will then recognize that its

comparison data differs from that of the other good machines. Under this condi-

tion the faulty computer enters the UPDATE mode. (It is important that ROM or

memory-protect hardware be employed to preserve the integrity of this RTI-driven

program).

Upon recognizing a computer from the set W which is in disagreement,

the remaining (agreeing) computers transfer programs, constants, and

that variable data necessary to restart computations to the disagreeing computer.

Two characteristics of this transfer are listed below:

1. Since it is necessary to maintain normal computations,

the transfer of programs and fixed constants takes place

at a low duty cycle and thus recovery takes on the order

of seconds.

2. Computations must be stopped during the transfer of that

variable information required to restart the disagreeing

computer. The UPDATE program is flagged by receipt of this

variable data and it resumes normal computation at the next

RTI if the transient was corrected.

If the disagreeing computer continues to produce erroneous results,

after the transient recovery attempt the remaining computers in set w, reclassify

the machine as permanently faulty and ignore its outputs.

2-11

2.1.1.4 Utilization of Transient Recovery Techniques

If memory protection (addressing interlocks) and NDRO technology is

employed, a majority of transient faults will be rollahead or rollback correc-

table. However, unless ROM is employed for instructions and constants, tran-

sients may cause memory-contents damage which require memory copy techniques for

correction. Thus rollahead techniques should be backed up with the capability

of copying memory contents to provide adequate coverage. A typical hybrid

transient correction approachr would be 1) ,attemp ru,,a,,au, L,,, i a usa,1e-

ment recurs, 2) attempt memory copy, and if fault still persists, 3) consider

the computer to contain a permanent fault, reclassify from W to F and ignore

further outputs from that machine in comparisons.

The previous discussion was related to internal cross-connections

associated with the software redundant configurations. It is these connections

which are utilized for comparison of variables for fault detection, voting to

establish the correct value of information in the various machines, and data

transfer for transient correction. The next sub-section deals with various

redundant structures for I/O.

2.1.2 Redundant I/0 Structures for Communications with Fault Masking

Beside the primary task of providing communication with peripheral

units, the I/O structure of the software redundant configurations must:

1. Provide masking of faulty computers.

2. Provide precisely timed events from commands from

computers which may be unsynchronized by a number

of microseconds.

3. Provide redundancy and single point failure protection

within the I/0 structure.

Avionics systems typically contain sensors and actuators at widely

separated locations. The recent trend has been to employ highly multiplexed

I/O in order to reduce weight and complexity associated with cabling. Thus

bus models will be employed in the following discussion of I/O structures. It

is assumed that two or more redundant busses are employed with a number of redun-

dant interfaces. Two types of bus structure will be discussed. The first

2-12

utilizes a bus dedicated to each of the computers with synchronization and

voting performed in the peripheral units. The second will treat the redundant

bus structure as an integral unit in which Voting, synchronization, and bus

redundancy management is carried out by a special bus controller. In this case,

individual busses and peripheral devices are not dedicated to any specific

computer.

2.1.2.1 Dedicated Busses

Figure 2.1-3 shows the connections employed in an I/O configuration

with dedicated busses. Each bus may be bidirectional or employ a separate set

of return lines. Each bus is controlled by its associated computer and is only

synchronized within a few instruction times of the other busses. Two types of

I/O modules may be attached to the bus 1) dedicated and 2) non-dedicated.

2.1.2.1.1 Dedicated Sensors

A set of identical sensors may be dedicated one per each bus line

and operate independently. This results in differing values being returned

to the various computers. And thus it is necessary to exchange input values

from a set of redundant sensors (using the interal cross-connections

described in the previous sections) between the computers in W and to com-

pute a common value for use in subsequent computations so that the machines

will generate identical outputs and not appear faulty. This process of

computing a common value for the various sensors is a critical RET in the

utilization of sensor redundancy which must (1) exclude values from faulty

machines (EF), (2) exclude inputs from sensors previously determined as

faulty, and (3) use reasonableness checks, averaging, etc. to establish

a "best" sensor value for common utilization.

The use of dedicated sensors has the advantage of simplicity, but

also has several disadvantages:

1. The number of redundant sensors is constrained to

the number of computers, which prevents optimum

balance of redundancy for modules of differing re-

liability. This approach is not applicable for con-

figurations of more than three computers due to the

requirement of excess redundancy in sensors.

2-13

S/A 1
S21

Cl

s22

C2

S2
3

C3

52N

NON-DEDICATED DEDICATED
CN SENSORS/ACTUA TORS SENSORS

FIGURE 2.1-3 DEDICATED BUSSES

2-14

2. If one computer fails, its associated sensors are

effectively disabled.

2.1.2.1.2 Non-Dedicated Sensors and Actuators

A non-dedicated sensor/actuator interface, provides communication

between all the computers and the redundant sensors and actuators. The bus

interface allows each of the computers to address any specific member of

a redundant set of sensors or actuators and the returning information is

coherent, i.e. the same number is returned to all computers. This differs

from the case of dedicated I/0 where each computer addresses a different

peripheral device within a redundant set and receives slightly different

information. Redundant sensor data is obtained by addressing several

redundant devices in sequence.

Bus interfaces to non-dedicated sensors or actuators are moderately

complex since they have the following requirements:

1. The interface receives identical commands and data from

busses associated with properly functioning computers, and,

most likely, incorrect outputs from failed computers.

2. The agreeing outputs are not precisely synchronized but

will occur within a worst-case time interval At.

3. For commands which change the state of peripheral subsystems,

a vote must be provided in the interface to mask out faulty

commands. (A typical implementation is to respond only

to two or more identical commands, occurring on different

busses within the acceptance interval At).

4. Independent data streams must be supplied to each computer

upon receipt of a set of identical input-request commands. In

order to meet the timing requirements of a number of candi-

date machines, information must be returned immediately upon

receipt of its request (i.e. each input transfer is

synchronized to the associated computer). Thus voting may

not be employed for information requests if the first

computer to make an I/0 request cannot wait for subsequent

requests and voting.

2-15

5. The I/O interface should supply identical data to all machines

making an information request within the acceptance interval

At. This can be accomplished by synchronization with the

RTI. (All status vectors and sensor measurements are latched

and only allowed to change upon occurrence of the RTI; all

programmed I/0 is constrained to occur between these changes).

Non-dedicated modules have several advantages indicated below:

1. ndiiu Il actvuators within reduanu. sets require a

guarantee of correctness from the computer system before

executing a command. Thus the I/O module voting capability

is necessary.

2. A computer failure does not disable non-dedicated sensors

and actuators.

Several disadvantages exist and are discussed in the following

paragraphs.

1. Latching of information to guarantee identical sensor values

to the various machines is not inconsistent with the real-time

control application, but does represent a degree of added

complexity.

2. Cross checking of input information must still be performed,

or a faulty input from an I/O module will appear as a computer

fault due to disagreeing results.

3. As indicated above, a non-dedicated I/O interface is a

device of considerable complexity, but this complexity is

not significantly greater than that required by replicating

simplex bus interfaces as employed with dedicated devices.

2.1.2.2 Non-Dedicated Busses (Non-Dedicated Sensors)

A non-dedicated redundant bus structure can be treated as a self-

contained unit for conveying information between the computers and peripheral

devices. One or more busses carry identical information to and from the sensors

and actuators, and individual sensors are accessed within redundant sets. To

utilize redundancy, a set of identical sensors must be sampled sequentially and

a selection (or voting) process performed in software. Individual bus lines

2-16

are not dedicated to any specific computer but, information may be obtained

from any of the computers by a process of switching or voting. A good first-

order approximation is to treat the non-dedicated bus structure as a series

term in the system reliability expressions (see Section 9).

Two options are possible for implementation of non-dedicated busses:

1. Switched Busses - Each of several busses can be connected

to any of the computers, in standby or massive redundant

configurations (see Figure 2.1-4). With standby redundancy,

only one bus is utilized, and the remaining busses serve as

spares. In the massive redundant case, the various busses

are connected to different computers, allowing voting and

error correction in the peripheral sensor and actuator

interfaces.

2. Voted Outputs - Each bus output is derived as a vote of the

various computer outputs. As with switched outputs above, the

redundant busses can be employed in standby or massive redundant

configurations.

Switched busses require limited amounts of hardware and can employ

software synchronization. Thus switched-bus structures are discussed in this

section which treats mostly-software computer configurations, being consistent

with the requirement of minimum external hardware. Busses driven by voted

outputs are more complex, requiring a degree of hardware synchronization.

Redundant busses which include output voting are described in Section 2.2 which

considers hardware-aided computer configurations.

2.1.2.3 Non-Dedicated-Switched Busses

A non-dedicated switched bus configuration is shown in Figure 2.1-4.

Case 1 - Standby Redundancy

One computer is designated MASTER and the others are designated

auxiliary machines. All I/0 is initiated and carried out by the master

machine. Synchronization of the computers and transfer of input information,

as well as comparison of information prior to output is performed using the

internal cross connections as described in 2.1.1.

The switching function, i.e. assignment of a bus to one of the

computers, is carried out in the following fashion. Each computer generates

2-17

COMPUTER I/0-1
1 /0-2
,/0- % -SWITCHI _I -3I
I/o-N-

COMPUTER -- 1/0-2
2

I/O-1

1/0-2
I/O-3-- SWITCH -

COMPUTER -- /0-3 I/O-N.

____I/O-1-

1/0-2
COMPUTER ---- I/0-N 1/O-3- SWITCHN

I/O-N"

INTERNAL CROSS
CONNECTIONS

PERIPHERAL
INTERFACE

.FIGURE 2.1-4 NON-DE DICA TED, SWITCHED BUS CONFIGURATION

2-18

several signals to specify which switch (bus) is to be active, and which compu-

ter (master) is to be connected. Voting is provided in the switch to select

the proper command when several computers disagree. (The vote performed in

the switches should be adaptive and can be implemented in such a way that the

switch only responds to computers in w, as defined by software voting algorithms.

This is a problem associated with specific implementations).

1. Fault Detection Detection of faults in the computers is

accomplished by comparison of variables using the internal

cross-connections as described in Section 2.1. Each computer

generates the information to be output and a cross-comparison

is made to verify proper computation. If all machines in W

agree, the master machine proceeds with the I/O operation.

Faults in the bus may be detected using a) a wrap around check

at each RTI, or b) by utilizing error detecting codes appended

to words before transmission.

2. Fault Correction In the case of a disagreement of the

computer designated master, when state vectors are compared

before output, the remaining computers in w designate a new

master machine by commanding the active bus to switch to a

different computer. Transient correction techniques are

applied to the disagreeing machine (rollback, rollahead,

memory-copy as described in Section 2.1) and if the disagreement

is not corrected the machine is deleted from the working

set W.

If bus failure is detected by a wrap-around or parity check,

the computers in W activate a spare bus and continue

computation.

Case 2 - Multiple Identical Outputs

A minor variation on Case 1 is to utilize all redundant busses to

convey I/O information between the master machine and the peripheral sensors

and actuator interfaces. A vote can then be performed at the peripheral inter-

faces and at the computer input to correct input and output information in the

presence of bus failures.

2-19

In both configurations (1 and 2) all I/0 is controlled by the master

machine offering the distinct advantage that the peripheral interfaces are not

required to synchronize multiple data streams. The standby redundant bus

structure further simplifies peripheral interfaces in that voting is not

required.

Case 3 - Multiple Computer Outputs

This configuration corresponds to the case of a set of active busses,
connected to at least three different computers. This approach allows correction

of computer and bus fault if voting is employed in the bus interface units.

Several computers must be designated master, and fault detection and recovery

algorithms become more complex.

2.1.3 Executive Program Considerations

The unique characteristics of the executive and applications pro-

grams running on MSW computer configurations will be considered in this and

the following section. Previous sections have considered the hardware

required for a "mostly" software redundant configuration as well as some of

the recovery strategies which are applicable. Here the executive augmenta-

tion which is required for the MSW computer configurations will be described

in enough detail to illustrate the feasibility of the approach.*

The executive augmentation which will be described is applicable to

any NMR or NMR-adaptive MSW computer configuration. With some further addi-

tional modifications, operation on a duplex configuration would be possible.

The three major augmentations to a standard or skeleton executive

are a voter module, intercomputer communication routines in the input/output

module, and memory reload on the error handler module. The voter is a com-

pletely new module which does not appear in a skeleton executive. The inter-

computer communication routines and memory reload capability are also new,

but they are additions to existing modules, namely, input/output and error

handler, rather than new modules themselves. Each module will now be discussed

individually.

The general requirements and applicable executive structures are described
in Section 3.

2-20

2.1.3.1 Voter Module (Figure 2.1-5)

The voter module is the heart of the MSW computer configurations.

All comparisons of data and all decisions as to which computers are fault-

free are made in the voter module. When the voter module encounters a sus-

pected error in a computer which was previously considered to be fault-free,

the error handler is utilized to attempt to bring the computer back into the

working state.

The voter module can be used in two different ways, depending on

the hardware configuration in which it is used. If the bus structure is such

that bus voting is required, then the voter module does this. If the hardware

does the bus voting, then the voter is used only to compare program state

vectors at predetermined program segment points. For either type of voting,

the use of voter module is the same.

The voter assumes that the computers in the configuration are

numbered. An example of the numbering scheme for three computers is shown

in Figure 2.1-6. Each computer checks on the computer ahead of it to ensure

that it has received data from that computer. If a computer determines that

it needs to reload itself, it reloads from the computer behind it. The first

computer is assumed to follow the last computer to make the connection a

closed ring of computers.

The voter module is first activated when all data should have been

received. The voter first checks to see if all computers have sent data.

If not, a check is made to determine if data have been obtained from the next

computer in the ring. If not, a fault is tallied against the next computer.

If the fault count for the next computer has reached or exceeded a specified

limit, n, then that computer is forcefully reloaded on the assumption that

it has failed and cannot recover. If data have been received from the next

computer, its fault tally is cleared to zero.

The justification for including the reload capability is the

recovery of a machine whose program or constants have been damaged by a

transient error. If a working computer has detected repeated errors or

missing responses in another computer, the memory of the faulty machine can

2-21

5 NO NO OTHER a C ELOAD
AlODta1+ Data OTHER: n

eclivdeved OTHER + 1

YES YES

Al NO

wAdvance e AI

-- W- Data
0 de\clntica 0I

NO

Masker NO SELF ERROR Correct

Own Data (Discgremn Own Data

Compurrect SELF

Number*

YEYES

Send New Set Number

Masker LFto Lowest Setsker

Nomberto Wifimtmh od Switch
Other

ComputeComputer NO Data

0 Data
Bad

YES

NO

FIGURE 2.1-5 VOTER MODULE LOGIC

2-22

Advance e All
Masker Mask r NO YE

Computer Comp er Computers

NumberTre

YES

Send New Set Number
Masker N \O to Lowest Set

Number Confirm Computer
.ubr toWith Good Switch

Other
Computers YSData

FIGURE 2.11-5 VOTE R MODULE LOGIC

2-22

Send Data
SEND to Other

Computers

Receive Data
RECEIVE From Other

Computers

Reload
RE LOA D Specified

Computer

Reloading Strategy

Initiated By

1 Initiated By 1

FIGURE 2.1-6 INPUT - OUTPUT LOGIC - ADDITIONS

2-23

be reloaded by the working machine. If errors persist, the faulty machine

has a permanent, hardware fault. If memory reloading restores the faulty

machine to working status, then memory damage had occurred and was repaired

by the reload.

The next step in the voting procedure is to compare the data which

are available. If all data agree, the self-error tally is cleared to zero

and the voting procedure is terminated. If all available data do not agree,

then further action is required. If the computer determines that its own

data are in disagreement with the data from other computers, it tallies an

error against itself and calls its error handler, indicating that its own

data do not agree with that of the other computers in the configuration.

It then corrects its own data and continues. If the computer's own data

are not faulty, then it clears its self-error tally and continues.

For some MSW computer configurations, the voter module will be

required to perform additional tasks. If one of the computers in the con-

figuration is designated as a master computer, then the voter module in

each of the computers must check on the behavior of the master computer. If

the master computer's data are good, then no further action is required.

If, however, the master computer's data are bad, then the next working com-

puter in the ring is designated as a new master computer. If the new master

computer's data are bad, the process repeats until all computers have been

tried as master computers.

If and when a new master computer is obtained which has good

data, then the number of the new master computer is sent to all other

computers for voting and confirmation. If confirmation is received, that

computer which was selected as the new master is used. If no confirmation

is received, that computer which was selected as the new master is used.

If no consensus can be obtained, the current master computer is used. In

any case, the new master computer is set by whatever means is required by

the configuration. This may be only setting tables in all the computers of

the configuration or it may be actually setting hardware to designate the new

master computer.

2-24

2.1.3.2 Input/Output Module

The augmentation required for the input/output module of the

executive in a MSW computer configuration consists of data interchange

routines and reloading routines. The data interchange routines consist

of transmitting routines which transmit data to another computer and re-

ceiving routines which receive data from another computer. Similarly, re-

loading routines are required which transmit a memory load from one computer

to another and which receive the memory load. It is desirable to have the

receiving routine be implemented as much by hardware as is possible.

The data interchange routines are used to exchange input and

output data for bus voting in configurations where bus voting is done by

software and for program state vector voting in all MSW computer configura-

tions. The data interchange routines in the sending computer initiate the

handshaking activity required to establish a connection between computers.

When the transmission has been completed, the sending computer proceeds to

send the data to the next computer in the ring. It may be possible on some

hardware to broadcast the data to all computers simultaneously so then only

one transmission will be required regardless of the number of machines in

the configuration.

The reload procedure is used to reload memory as the last resort

when all other recovery mechanisms fail. If a machine is well enough to

know it needs a reload, it will request it. Else, another computer will

forcefully do the reload. In either case the computer being reloaded should

do the minimum possible role in the reload. This may require software, but

read-only memory or handwired control is preferable. The same hardware which

is used for initial loading by AGE could very likely be used for the function.

The reload strategy which is used always loads the next higher

numbered computer in the ring from the next lower number. The routine which

transmits a reload is a relatively slow, low-priority routine. It transmits

words as the facilities are available until the computer being reloaded has

received all the program and inactive data words. When this has been

accomplished, computation is halted, the state vector is transmitted at the

highest possible speed and all machines begin computations at the same point.

2-25

2.1.3.3 Error-Handler Module (Figure 2.1-7)

The augmentation required for the error handler module of the

executive in an MSW computer configuration consists of the processing which

handles voter disagreement errors when the subject coiputer disagrees with

the other computers. The first step which is taken is to record the error

for later analysis if required. Then a comprehensive self-test is attempted.

If the test fails, the computer returns to attempting normal operations,

though it will probably be considered to be a faulty machine by the other

computers in the configuration. If the self-test is successful and does

not indicate any hardware malfunction, program memory damage is indicated.

Thus a check is made of the number of self-errors. If a specified number,

m, of self-errors has occurred, a self-reload is initiated to return the

computer to normal operation.

2.1.4 Applications Programs Considerations

The major effect on applications programs of using a MSW computer

configuration is the rollahead/rollback requirement which implies a need for

program segmentation. It is assumed here that, as discussed in the preceding

section, any voting which is required for sensor data or actuator control is

done by the executive routines.

The segmentation requirement for rollahead/rollback will have varying

impacts on the applications programs. Many programs will require only minimum

modification to run in a rollahead/rollback environment. These programs are

ones which run for only a short time when activated and require no internal

segmentation. The programs may be run often, but they complete each time

and can establish a new rollahead/rollback point when they complete. Another

type of program which will require minimum modifications is one which requires

no state vector data between activations. This type of program always uses

the most current input data for its computations. Even if it is a relatively

long program, it must be restarted with fresh input data if an error occurs.

The type of program which is most effected by recovery in a

rollahead/rollback environment is the type which requires a relatively long

time to run and has many variables in its state vector. For this type of

program, careful segmentation is required to establish rollahead/rollback

2-26

ROR isagreement? As Before

YES

Record Conduct

ror Test

YES

RELOAD
SELF: m (+1) - ())

FIGURE 2.1-7 ERROR MODULE LOGIC - ADDITIONS

2-27

points with minimum size state vectors. Also, the amount of data in the

state vector at the end of each activation of the program should be minimized.

One other consideration affects applications programs. This is the

executive scheduling mechanism. If a synchronous-type executive is used,

the rollahead/rollback structure of the applications programs can correspond

temporally to their successive activations. If an asynchronous-type executive

is used, an order of magnitude of complexity is introduced due to the number

of programs which may be active. When an asynchronous-type executive is used

in a rollahead/rollback environment, both the executive and the applications

programs must be structured to minimize the size and frequency of state vector

updates.

2.1.5 Machine Features and RETs

The previous discussion of software redundant configurations dealt

with the general interconnections, synchronization, and recovery techniques

required when external hardware is held to a minimum. Several features are

characteristic of these configurations. Specifically, 1) an internal cross

connection network for exchange of information between computers, 2) software

techniques for synchronization, comparison checking and transient recovery in

the redundant computers, and 3) dedicated and non-dedicated I/0 structures.

The principal objective of this architectural description is to clarify the

features required for implementation of the software redundant configurations

and to identify applicable RETs and their influence on reliability modeling.

The next section is a qualitative discussion of those machine features necessary

to implement MSW configurations with off-the-shelf hardware requiring minimal

additional circuitry.

2.1.5.1 Machine Features

The salient requirement for an off-the-shelf machine for MSW implemen-

tations is the need for sufficient I/0 capabilities to support the internal cros!

connections and I/0 busses. This implies:

I. Signal/Interrupt Facilities for synchronization, and failure

notification and bus redundancy control where applicable.

2-28

2. Digital (word) I/0 for support of I/0 busses. Serial or

byte-serial transfer of information is consistent with the

relatively low data rates associated with the avionics appli-

cation and the requirement of high bus reliability. A DMA

capability (under control of the processor for reliability)

though not essential will result in simplication of software

and an easing of processor timing (speed) requirements.

3. Internal Cross-Connections The machine should support the

capability to send information to the other computers and a

multiple-port facility to receive information from the other

machines. If the computers are not precisely (hardware)

synchronized, it is necessary for incoming information from

other computers to be buffered. The most effective way to

provide this buffering and to expedite the cross-transfer

of incoming I/0 information is to utilize DMA structures

for the transfer of information between machines.

4. Time-Out Counting In order to proceed when one machine

fails to generate data at a comparison (or rollback) point

it is necessary to utilize a time-out count. This counter

may be implemented either by special hardware or in software.

2.1.5.2 Reliability Enhancement Techniques

There are a considerable number of optional features and techniques

which may be included in the machines for reliability enhancement. Examples

are.NDRO memory, wrap around bus checks, coding techniques, program rollahead,

etc. The following is a discussion of the implication of these features on

modeling parameters. The following is a listing of a number of these optional

RETs and their effects from the standpoint of reliability modeling.

2.1.5.3 Machine Options

1. NDRO Memory - Significantly reduces the probability of transients

which damage the contents of memory. Greatly reduces the

probability of transients which damage programs and data in

memory thus making most memory transients correctable by program

rollahead.

2-29

2. Memory Address Protection - Limits the extent of damage due

to a processor transient. Prevents processor transients from

damaging protected memory areas, typically programs and fixed

data, thus making most processor transients rollahead correctable.

2.1.5.4 Fault Detection

1. Comparison - Information is compared between the computers at

rollback points and before outputs. Thus faults effecting the

currently active area of program and memory are detected with

probability approaching unity. This fault detection only occurs

at discrete intervals of time (typically once every minor cycle)

allowing considerable memory damage to occur before detection

of a transient.

2. Built-In-Test Equipment - RETs associated with built-in tests

such as memory parity checking, address protection, illegal

operation traps, etc. have a probability of detecting faults

which is considerably less than unity, however, those covered

by the BITE are detected sooner thus reducing possible memory

damage. When comparison is employed, BITE does not improve

the probability of fault detection but does in some percentage

of faults allow for more rapid detection.

3. Duplex Fault Detection - When only two computers remain func-

tional, the probability of recovery from failure depends upon

the effectiveness of diagnostics utilized to isolate the faulty

machine and the effectiveness of BITE. Typically the coverage

of diagnostics indicated by manufacturers includes the use of

BITE, without which software diagnostics would be larger, slower,

and less effective.

4. Memory Comparison There can exist faults in memory areas seldom

utilized. The maximum duration of these lurking faults can be

bounded if memory is compared at a low rate between machines

on a periodic basis. Lurking faults tend to increase the chance

of double failures and thus should not be allowed to remain

within the system.

2-30

2.1.5.5 Transient Recovery

1. Program Rollback - Given that a transient is detected there

exists a probability of successful rollback corresponding

to the probability that only local variables are damaged

in memory. This probability is significantly increased by

the use of NDRO memory and address protection. Associated

with program rollback is a recovery time during which the

program segment is repeated during which computation is halted

and the system remains vulnerable to additional faults.

2. Program Rollahead - Has the same probability of transient

recovery as program rollback, but has a much smaller recovery

time associated with transfer of state vector information.

3. Memory Copy - Should correct all transients if information

from other computers is correct and no additional faults occur

during the long copy duration (in the order of seconds).

2.1.5.6 Internal Cross Connections

1. Failure Treatment Failures in the internal cross connections

have the identical effect of failures in computers for nearly

all failure modes. Failure of an output drivers and input

receivers are associated with their related computers as is

the corresponding failure rates.

2.1.5.7 I/O Structures

Dedicated and non-dedicated I/O busses and peripheral interfaces are

architectural features requiring comparative simulations for evaluation.

Dedicated and non-dedicated I/0 are included in the simulator and treated in

the following fashion:

1. Non-dedicated I/O allows separation of the computers, bus

structures, and sets of redundant peripherals such that the system

reliability is reasonably expressed as the product of their

individual reliabilities.

2-31

2. Dedicated I/0 allows interactive failures such that the

computers, bus, and I/O must be simulated together to account

for dependent failures. (For example failure of a computer may

disable a large set of sensors).

2.1.5.8 Bus Fault-Detection

Two techniques are commonly utilized for bus fault detection:

wraparound checks and error detecting codes. The use of bus fault detection

techniques must be examined in conjunction with the manner in which redundancy

is applied to the I/O buses. If multiple buses are provided with voting at

the receiving modules, fault detection and correction is readily implemented

in the associated voters as long as three buses are functioning properly.

However, when only two buses remain functional, the failure cannot be resolved

by a voting process and additional fault detection techniques must be employed
to identify the one which is functioning properly. If a standby redundant

bus configuration (one active with spares) is utilized fault detection is
essential to identify the fault and activate a spare bus.

1. Wraparound checks are characterized by periodically generated

test outputs which are returned from one or more peripheral

devices to verify proper functioning of the bus. While these

checks have very high coverage with respect to permanent bus

faults, they have two disadvantages: (a) faults are not detected

instantaneously, but only at the occurrence of the next periodic

check; (b) transient faults are not detected.

2. Coding techniques provide concurrent fault detection with a

coverage determined by the failure modes of the bus and the

amount of redundancy employed in each message. The simplest

fault detecting code is multiple parity bits which can be imple-

mented to provide high coverage at minimal cost [ULTRA 74].

In order to prevent erroneous commands from being accepted by
actuators (in the case of standby or residual duplex buses), coding techniques
should be employed. The use of error detecting codes allows TMR buses to
function after the failure of two component buses. The effect of this RET is
modeled in Section 9.

2-32

2.2 HARDWARE - AIDED SOFTWARE CONFIGURATIONS (HASW)

Hardware-aided configurations are characterized by the use of

external hardware for fault-detection and synchronization. The goals of

this approach are to (1) increase speed of computation and simplify software by

performing the task of comparing state vectors and outputs in hardware, and

(2) to allow the use of off-the-shelf computers with minimal I/0 facilities.

A block diagram representing the general class of hardware-aided configurations

is shown in Figure 2.2-1.

A set of N computers is connected to a set of I/0 busses through a

special External Hardware Interface (EH). This interface may be a single,

massively-redundant structure or a set of identical modules dedicated to either

individual computers or busses but in either case the following functions are

required:

1. Detection of faults by comparison of outputs and notification

of the computers of the identity of the disagreeing unit by

generating levels or interrupts.

2. Synchronization of computers (when applicable) and buffering

bus information.

3. Exchanging of information between computers in order to effect

transient correction.

4. Supplying the bus(ses) with correct information in the presence

of faulty computers. (This is done using either switching or

voting as in the MSW case).

The computer I/0 interface to the EH interface is assumed to have the

following properties (which are simple but consistent with a large number of

computers.)

1. Programmed output consists of a single word including device

address, data, and an associated strobe signal. The output

may consist of parallel, serial or byte-serial data.

2. Programmed input accepts a single word which, upon issuance

of a command output, is sampled after a short fixed time (in

the order of a few microseconds).

2-33

(DISAGREEMENT/COMMAND/SYNC)

INTERRUPTS/LEVELS

COMPUTER I
#1I

=I I

EXTERNAL
I HARDWARE

COMPUTER I INTERFACE
#2 I

I I
(Fault Detection
Synchronization, .

COMPUTER Intercommuni- I REDUNDANT
cation, I/0) I I/0 BUS

#3

0 I

COMPUTER

I I

DATA IN/OUT

FIGURE 2.2-1 EXTERNAL HARDWARE INTERFACE:
HARDWARE-AIDED SOFTWARE CONFIGURATION

2-34

3. A DMA input accepts data, as delivered from external

devices and stores this information, within a worst-

case time of a few memory cycles, in pre-defined

sequential locations.

A byte-serial or serial computer interface is preferred if the I/0

data rate is acceptably low in order to reduce connections between the computers

and EH interface.

The EH interface must provide buffering for incoming bus informa-

tion for the following reasons. First a typical processor expects "immediate"

availability of requested data within a few microseconds of issuance of an input

command. This is often not consistent with delays imposed by a bus structure.

Secondly, a typical avionics bus is serial, self-clocking (Manchester) and

synchronized by the sending unit, while the typical processor accepts parallel

or at best byte-serial information. Thus the approach is to command the sensors

to return data to one or more buffer registers in the EH interface and all

computer input commands access registers within the interface.

Similarly output information is buffered for transmission on the bus

for three reasons: (1) to allow parallel or byte-serial to serial conversion

(where applicable), (2) to hold information from loosely synchronized computers

until all outputs are available for comparison, and (3) to provide a mechanism

for holding information for transfer between computers.

The simplest means for describing the functioning of the EH interface

is to consider the non-redundant case. The following section will present a

simplex model of the external hardware associated with a hardware aided redundant

configuration. Subsequent sections will deal with options for its redundant

implementation and example configurations.

2.2.1 The External Electronics Module (EEM)

The non-redundant building-block element of the external hardware

interface is designated the External Electronics Module (EEM), and is

shown in Figure 2.2-2. The EEM accepts and buffers outputs from the computers,

synchronizes the machines, provides voting for outputs, provides for inter-

computer communications, and buffers returning inputs. Examples are given for

the case of a non-dedicated EEM with multiple buffers for inputs, and the case

2-35

where an EEM is dedicated to each computer and has only one input buffer. The

following paragraphs describe the functioning of the EEM and its interaction

with the redundant computers to effect fault detection and recovery.

2.2.1.1 Case 1 - No Faults

At the point of outputting or comparison of state vector information

(by outputting to a non-existent peripheral) the computers load the EEM output

buffers and halt. Upon receiving two agreeing outputs, the EEM waits for a

"worst-case" time interval (e.g., a few nsitruction timesIII during which the other

computers should have completed the output. At this point all outputs are

compared, the result of the comparisons are conveyed to the computers via the

disagreement indicators and a completion interrupt is sent to the computers to

re-establish computation. If the output was addressed to a sensor or actuator,

the output buffers are voted and conveyed to the bus and, if a data return is

commanded, the returning information is loaded into the input buffer. Each

computer has control of its associated input buffer for subsequent access to

its returned information.

(The information on the bus is derived as an adaptive 2-out-of-n

vote. Two agreeing output commands must occur within a very short time interval

before a command is allowed to each the bus. Two nearly simultaneous identical

outputs from faulty computers are considered to be a sufficiently remote

possibility that it is not protected against in the EEM). For the case of a

dedicated EEM, information is only returned to its associated computer and thus

only one input buffer is provided.

2.2.1.2 Case 2 - One Computer Disagrees

In this case N-l computers complete an identical output and a faulty

computer either fails to output or outputs incorrect information. The machines

are restarted by the EEM by raising the completion interrupt, and simultaneously

the disagreement level associated with the faulty computer is sent to all

computers. The disagreement indication causes two actions:

1. If capable of doing so, the disagreeing computer is halted

by its disagreement interrupt.

2. The agreeing machines have two options; (1) classifying the

disagreeing machine as faulty, masking out its disagreement

2-36

Control Levels To Control Levels To

All Computers Dedicated Computer

Contro Control

Buffer B --- uffer-
Data & Data &
Commands Buffer Vote/ Bus Out Commands Buffer - Vote/ Bus Out
From Com- From Com-
Computers Buffer pare Computers Buffer pare

Buffer Buffer

Bus in Bus In

Data To : Buffer
Computers Data To

Buffer Dedicated Buffer
Computer

Buffer B) Dedicated

Buffer
S*Control Levels

(1) Disagreement Indicators (One For Each Computer)

A) Non-Dedicated (2) Completion Indication For Synchronization
(3) Message Alert (By Command From At-Least Two

Other Computers)

FIGURE 2.2-2 THE EXTERNAL ELECTRONICS MODULE (EEM)

interrupt and ignoring its further outputs, or (2) attempting

a transient recovery.

Typically the first disagreement is considered to be caused by a

transient and a transient recovery is attempted under control of the agreeing

computers using rollahead, memory copy techniques, rollback, or restart.

Recurrence of the disagreement after one or more transient recovery attempts

is considered evidence of a permanent fault, the disagreement indication is

masked in the working computers, and the faulty computer is subsequently ignored.

2.2.1.3 The Transient Recovery Mechanism

In order to effect transient recovery, a communication path must be

established such that the agreeing computers can enter data into the memory of

the faulty machine and command its restart. The adaptive voting capability is

utilized within the EEM to allow this intercommunication as described below:

1. The EEM will accept commands addressed to individual

computer units from the agreeing machines. If two or

more agreeing commands are received within a designated

time window, the information received will be transferred

directly to the input buffer of the addressed machine and

the corresponding message-alert signal(s) is transmitted.

(Note that in the case of dedicated EEMs, each EEM only

accepts commands for its associated computer).

2. The message-alert signal may be a single interrupt to a

subroutine which interprets the incoming information as

memory addresses, corresponding data, and transfer addresses.

This approach relies on the existence of a small interrupt

routine in the memory of the faulty machine which interprets

messages from the other computers and effects transient

recovery operations. A second approach is to utilize micro-

programming through AGE interface commands so that the response

to commands from the other machines resides in protected memory.

Transient recovery algorithms are similar to those used in the previous

software redundant configurations (see 2.1.3 and 2.1.4). When a computer dis-

agrees upon output of a state vector, the agreeing computers transfer the correct

2-38

value of the state vector and the computation starting address to the dis-

agreeing machine. If the rollahead is unsuccessful, as indicated by recurrence

of a disagreement from the same computer within a pre-defined time period, an

(optional) memory copy may be attempted. The agreeing computers transfer the

contents of memory to the disagreeing machine and attempt a restart. If the

previous transient recovery attempts are unsuccessful, the disagreeing machine

is adjudged to contain a permanent fault, its disagreement interrupt is dis-

abled in the working machines, it is commanded into a halt state, and its sub-

sequent disagreement indications (if further outputs should occur) are ignored.

2.2.1.4 Case 3 - Multiple Faults

There exist two cases of multiple fault conditions; (1) the expected

case where one or more computers have previously failed and the "next" single

failure occurs, and (2) the case where more than one failure occurs simultaneously.

1. If one or more machines have failed previously and a single

computer fails, a single disagreement indication from that

machine is acknowledged by the remaining good computers since

the disagreement indications of previously faulty machines have

been masked out. Transient correction is carried out identically

to Case 2 above.

2. Recovery from multiple, simultaneous disagreements can be

effected if at least two computers remain in agreement, as

the two remaining computers can initiate transient recovery

in the other machines. If all computers disagree, no output

is acknowledged by the EEM which requires two agreeing outputs

to respond. A period without I/0 activity corresponds to this

condition and may be detected by logic within the EEM modules

which would cause a system restart in all computers.

System failure occurs in the previous configurations when all but two

computers have failed and one of the remaining computers suffers either an un-

correctable transient or a permanent failure. When two computers remain func-

tional, this condition is designated the Residual Duplex Configuration. The

following section is a discussion of techniques for recovery from failures in

the residual duplex configuration and continuing computation with a single

simplex computer.

2-39

2.2.2 Residual Duplex and Augmented Voting Redundancy

In order to effect recovery when only two computers remain functional

it is necessary to employ program rollback for transient correction, diagnostics

for permanent fault isolation, and modifications to the EEM to override the out-

put vote and allow the remaining single computer access to the I/0 bus. The

following is a description of the response to faults in the residual duplex

configuration.

1. The EEM units ae n 4 otified by command from the two f nctionin
I * I II LLII Ul1 1 I l 1 I IJ.I I t t1LJ%. llllll A. I * 1I tl 1 %II I %_ 1 I '-. 1 .

processors (before occurrence of a fault) that only two computers

remain and the identity of those two processors is stored.

2. The two remaining computers modify the interrupt handling

routines associated with their disagreement interrupts such

that a program rollback is performed upon disagreement. (In

the residual duplex mode the EEM accepts outputs from either

machine and, if a disagreement occurs, it inhibits the output

and indicates disagreement to both computers).

Program rollahead is no longer applicable since it is not

known which machine contains correct information and thus the

rollback segment is re-executed using the previously stored

(N-lth) state vector.

3. If the disagreements continue, the EEM commands a diagnostic

in both machines which includes hardware tests and checksum

verification of programs. The machine which delivers a properly

computed (pre-determined) output will be allowed to continue

the computations. If both computers pass the diagnostic or if

both fail one computer is chosen and a system restart is

attempted. (The latter cases have a significant chance of

failure).

2.2.3 A Recovery Algorithm: Hardware-Aided Software Configuration

The following section describes an example recovery mechanization

for a Hardware-Aided Software RCS configuration. It is intended to indicate the

interaction between hardware and software in a typical recovery mechanization.

2-40

2.2.3.1 Hardware EEM Functions

The EEM provides the following signals to (1) its associated com-

puter if it is dedicated or (2) all computers if it is non-dedicated.

1. I/O-Complete Interrupt Indicates that an output has been

completed by at least two agreeing computers and an elapsed

time At has occurred to allow all other machines to output.

As all computers halt after output the I/0 complete interrupt

serves as a restart/synchronization signal.

2. Disagreement Indicator Signals are sent simultaneiously

with the I/0 complete interrupt. There is one Disagreement

Indicator for each computer which indicates that computer's

disagreement with the threshold-voted result.

3. Rollback Interrupt When the EEM is notified that only two

computers remain functional, subsequent disagreements of the

two machines result in a Rollback Interrupt. This interrupt,

sent to the two residual duplex computers, causes a program

rollback.

4. Diagnose Interrupt If rollbacks prove unsuccessful in the

residual duplex configuration, the EEM commands a diagnosis

of the two machines. A machine which successfully completes

the diagnostic is connected to all buses and continues in

simplex.

5. Message Alert Interrupt Two agreeing computers may transmit

a word to any other computer by specifying a unique device

ID upon output. The data word is transferred to the input

buffer associated with the addressed computer by the EEM and

a Message Alert. The Message Alert interrupt is sent to that

machine (see Figure 2.2-3). In the case of dedicated units,

the EEM associated with the addressed machine recognizes the

device I/D and loads its associated input buffer.

2-41

I/O Complete Rol lahead

Interrupt RA1

Y
All Units Disagree? - System Restart

Save Disagreement Mask
Is this Unit (1) Y-a Disable Disagreements; Disable (Mask) Disagreements;

in Disagreement? Initialize for Recovery; Halt Recovery State (RS)*-Rollahead

Send Rollahead Command
Rollahead JRecovery Memory Copy i to Faulty Computer (FU = J);

State Word Count, WC-0

SWait for Next RA2
INormal /O Completion

TRA21/0 Completion - ncrement Word Count (WC)
Are there any unmasked No Continue Interrupt (RA2)

Disagreements? (FEW) Computations

'f No
If Multiple Disagreement Transfer Last Word? (TRA Address)
Select one on Basis of Next Word (WC = M)

Priority (Denoted Unit J); FU*-J to Faulty Yes
Computer (FU)

Increment Fault Count for Recovery State (RS)-Normal;
Unit J (FCj FCJ + 1) Restore Disagreement Mask;

Wait for Synchronization At

Go to
"O Rollahead

SRA 1 Continue Computations

FC =? 2 No Go to
- - Memory Copy

MCI

Deactivate J 3 JEW

Mask its < 2
Disagreement Indicator

INo. =2 NotifyEEM
Computers of Duplex Continue Computations

in W =? State

FIGURE 2.2-3a RECOVERY SOFTWARE - (ROLLAHEAD) HARDWARE-AIDED CONFIGURATION

Periodic Entry

Memory
Copy

Copy Recovery State--Memory Copy;
Disable Disagreements, Save Mask

Enter FC (=J) in
Copy Stack (CS) - FIFO

Send Copy Command + Base Address
SMemory to Faulty Computer - CS(O);

Enable Periodic Entry; Memory Word Count (WC)-0O; PE--PE + 1,
Enable Periodic Entry; Copy
Disable Disagreements MC2 Increment Sub-Block Counter

from Unit J

Wait for Next
Continue Computations Increment /O Completion

Continue Computations -Increment WC Interrupt (MC2)

Rollback WC = N? i.e., No Transfer
Interrupt Sub-Block Completed? Next word

_ Perform Yes to Faulty
Diagnosis Machine - CS(O)

Yes (Indexed by WC)
Enable Disagreement PE = M

Indicator for Faulty Copy Complete?

Computer CS No

Restore Disagreement Mask;
Recovery State -- Normal

No Is Another
[Copy Request

in Copy Stack? Continue Computation
Disable

Periodic Entry Yes (Wait for Next Periodic Entry
if it is enabled)

L- PE*--O, i.e.,
Reset

Sub-Block Counter

FIGURE 2.2-3b RECOVERY SOFTWARE - (MEMORY COPY) HARDWARE-AIDED CONFIGURATION

2.2.3.2 The Software Function

Figure 2.2-3 represents a block diagram of the software algorithms

utilized to carry out fault recovery. The software in each functioning

machine maintains a record of those computers which are properly functioning

and those considered to have failed. The disagreement indicators are per-

manently masked (ignored) for previously discarded machines. The recovery
software has four states: normal, rollahead, memory copy, and wait, which

are discussed below:

1. Normal During normal operation at the completion of each

output, the computer checks the unmasked disagreement indicators

and if there are no disagreements it resumes normal computations.

In the case of disagreements, the following actions are taken:

a. If the computer is itself in disagreement, it halts

(if possible) and waits for rollahead or memory copy

information from the other computer.

b. If a different machine is in disagreement, it examines an

error tally associated with the faulty machine (FC.).
If that machine has not previously disagreed, the rollahead

state is entered and the current state vector and restart

address is transferred to the disagreeing machine. If a

previous rollahead has been unsuccessful within some time

interval At, a memory copy is attempted.

2. Rollahead The current state vector and restart address are

transmitted from the agreeing machines to the disagreeing
machine. Fault indications are masked during the rollahead

with two exceptions. If one of the working machines disagree

during the transfer, it enters the wait state.

3. Memory Copy The programs, constants, and a minimal set of
variables required to permit a system restart are transferred

to the disagreeing machine at a low duty cycle. Since the
memory copy cannot be allowed to consume more than a few

2-44

percent of the available processing time, the copy information

is transmitted periodically in short blocks. Thus a memory

copy is initiated by activating a periodic entry to the transfer

program. The Memory Copy State is only entered during the

transfer of each short block. The final block contains variables

necessary to perform a "warm" system restart.

4. Wait State A machine which recognizes that it is in disagree-

ment upon receiving an I/O complete interrupt or BITE error

indication halts until loaded by the other working machines

with a program rollahead or memory copy. If a memory copy is

unsuccessful the disagreeing machine is ignored. The fault

tallies associated with each machine not designated as perman-

ently faulty (FC j2) are cleared if sufficient time passes

without recurrence of a fault.

Two additional interrupts are shown in Figure 2.2-3 as single

arrows which are utilized by the EEM to command program rollback

and diagnosis when only two computers remain functional.

In the case of non-dedicated EEM's an additional level of

complexity is added to the software. A set of outputs is

received from each EEM and an adaptive vote must be taken on

these inputs in order to eliminate the effects of defective

EEM units on the recovery process. This is straightforward and

not included in the figure.

2.2.4 Utilization of Redundant EEM. Units

Two general approaches to implementing redundant EEM units are shown

in Figure 2.2-4. The first approach employs non-dedicated redundancy such that
any of several EEMs can be utilized by each computer. The second approach
utilizes a separate EEM dedicated to each computer.

2.2.4.1 Non-Dedicated Redundant EEMs

As shown in Figure 2.2-4a, there are N computers and J EEM units.
Each EEM accepts outputs and commands from all the computers and inputs from
all buses. Therefore, when functioning properly, each EEM delivers identical
data and control information to the computers. By a process of voting and/or

2-45

CN CN1
12J

__LROI 801
V/S V/S -RO2 _13O2-BO

SLROJ EEM 1

CO1 CO2-

CON-co 1,2,5
CN

1 2 J - ROl CN2

V/S V/S BO1
ROJ -b2C2 EEM 2 - BOS

CO2 CO1

CON -I1,2,S
CN1 2 J

12J

ROV/S V/S .R2 CNJ

CN 1 ,BO
1,2, S

C3 EEM J
CO1 -- 2,

-- BICON- - _ , 2,S
a. NON-DEDICATED REDUNDANT EEMS

CO-COMPUTER OUTPUT
RO-EEM DATA RETURN TO COMPUTERS
CN-D I SAGREEMENT INDICATORS &CONTROL LEVELS
SO-OUTPUT BUS
BI-INPUT BUS
V/S-VOTE OR SWITCH FUNCTION

CN1

CO1 C2 _BO
C EEM I -11

CON- B12
B13

CN2

CO 01* BOC02 Co 02

C2 EEM 2 I---il
CON B---12

8 131
BI13

CNN

B03
CO1

CN CO2 EEM3 --- Bil1
: - r---Bi2

B813

b. DEDICATED EEMS

FIGURE 2.2-4 REDUNDANT EEM IMPLEMENTATIONS

2-46

switching, the computers can ignore the outputs of one or more faulty (disagreeing)

EEM units. (Typically the input to the computers from EEM units would be voted

using an adaptive software vote requiring one more than half of the inputs to

agree from EEM units which have not previously been adjudged faulty).

If each EEM can be commanded to output on one of several (s) redundant

bus lines failures in the EEM can be decoupled from bus failure, resulting in

a totally non-dedicated system.

2.2.4.2 Dedicated EEMs

In this case an EEM unit is dedicated to each computer resulting in

considerable simplification of the EEM (see Figure 2.2-2) and the associated

interconnections. This approach provides adequate reliability if the failure

rate of the EEM and associated bus is small with respect to the failure rate of

the computer. In this case failure of an EEM mayresult.in disabling the associ-

ated computer and bus. Failures which cause improper control signals result in

failure of the computations on the associated computer, while failures in voting

for output disable the associated bus. Non-dedicated sensors and actuators are

recommended using this configuration.

2-47

2.3 MOSTLY-HARDWARE CONFIGURATIONS

Mostly-hardware configurations are structured in such a way as

to minimize the amount of software required to support fault detection and

recovery. Table 2.3-I indicates the additional supporting software functions

employed in software, hardware-aided and mostly hardware configurations.

Mostly- Hardware-Aided Mostly-
Software Software Hardware

Fault Detection by Comparison X

Synchronization X

Transient Recovery X X

Recording and Masking Perma- X X
nently Faulty Modules

TABLE 2.3-I SOFTWARE OVERHEAD OF FAULT-TOLERANT
CONFIGURATIONS

The special software features associated with hardware-aided con-

figurations are:

1. Rollback/Rollahead structured programs.

2. Identifying recurring faults and the decision to employ

rollahead, memory copy, or classify a computer as permanently

faulty.

3. Control of data transfers for rollahead and memory copy.

4. Disabling (fault response) faulty machines.

5. Diagnostic programs for recovery when only two computers

remain functional.

6. A "warm" restart capability. A restart point at which compu-

tation can be resumed with a minimum of variables required for

initialization. (Employed to minimize downtime for transfer

of variables at the end of a memory copy.)

Mostly-hardware configurations perform the functions associated

with the previously discussed hardware-aided software configurations along

with implementing one or more of the above functions in hardware.

2-48

The associated.hardware recovery elements will be considered as

extensions to the EEM previously discussed. And the augmented EEM's will be

protected utilizing non-dedicated redundancy as shown in Figure 2.2-4.

2.3.1 Augmented EEM Units

The primary augmentation of the EEM units to effect mostly-hardware

control over the recovery process is the addition of a "system state" store

consisting of a working/failed flip flop and a tally count for each computer.

Using this information the augmented EEM acts as a finite-state machine. The

current system state and disagreement indications are combinatorially mapped

into a specific recovery action. Similarly the fault indications are utilized

to update the system state. This mechanization is shown in Figure 2.3-1.

The state control is similar for a large number of implementations while the

recovery net implementation is custom to the particular recovery algorithms

employed. Thus an informal description of the state control function will be

given below, followed by descriptions of the custom recovery control for the two

example configurations in the following sections.

2.3.1.1 The State Control Function

The state control function is to update the system state store

to indicate the current status of the redundant computers within the system.

Associated with each computer is a tally count which is advanced upon its

disagreement with the other working machines. The tally counts are periodically

reset if a sufficient period of time has elapsed to indicate that a transient

has been corrected. Typically, after the first disgareement, (Ti=l) a tran-

sient recovery is attempted. If subsequent disagreements recur, the count is

advanced (Ti+Ti+l), additional recovery techniques are attempted and, after

a prescribed number of unsuccessful recovery attempts (Ti=N), the computer

is adjudged permanently faulty (W-F) and further recovery attempts are

discontinued.

2.3.2 Recovery Control

A logical starting point in the description of the recovery

functions carried out by the augmented EEM is the control levels between
the AEEM and computer units. The following control levels are a "typical"
set generated by the augment EIM.

2-49

1. I/0 Complete Interrupt (ICI) - Same as HASW configuration

provides synchronizing restart after computers output.

2. Send Rollahead (SR) - Causes computer to output a state

vector and rollahead address. This information is

received from all computers thus commanded, voted in the

AEEM and loaded into the input register of the disagreeing

machine.

n n 'I I fnnN T. -^4 -^ - -- -
3. Receive Rollahead (RR) - Is sent to disagreeing computer

to accept rollahead information from its input buffer.

(Details of control can be implemented several ways. A

typical case is to treat SR, RR, and ICI with the following

interpretation: SR - ITI - send first word, SR • ICI -

send intermediate word. The last word is a transfer address

for rollahead restart. The AEEM is notified by a special

device code. Similar interpretations are utilized by the

receiving computer (RR • ICI - first, RR • ICI - intermediate,

and RR • ICI - last word and start.))

4. Send Copy Block (SCB) - Causes computer to output a block

of data for memory copy.

5. Receive Copy Block (RCB) - Is sent to disagreeing computer

to accept memory copy information from its input buffer.

(Several detailed implementations are possible similar to

the example in 3 above).

6. Halt - Halts the commanded machine.

7. Cold Start - If all computers disagree the AEEM commands a

cold start of all machines currently classified as working.

8. Diagnose - Causes computer to execute a self-diagnostic

including program check-sums.

Two recovery strategies will be discussed in the following sections.

The first employs only memory copy techniques for transient recovery and, at

the cost of slower recovery of the disagreeing machine, eliminates the.require-

ment for rollahead/rollback structured programs. Unfortunately, this approach

2-50

CONTROL SIGNALS
TO COMPUTERS

RECOVERY NET

& EEM CONTROL

W/F W/F W/F

TALLY TALLY TALLY DISAGREE-
MENT

CoComp Compu- •e. Compu- INDICATIONS
ter ter ter
1 2 N

SYSTEM
STATE

STATE-
CONTROL

NET

VOTE/
COMPARE BUS OUT

SBUFFER

FROM
COMPUTERS BUFFER

V BUSSES IN

BUFFER

BUFFER

FIGURE 2.3-1 AUGMENTED EEM FOR MOSTLY-HARDWARE CONFIGURATIONS

2-51

requires system restart to recover from transients in the residual duplex
configuration. The second approach utilizes program rollahead, rollback,
and memory copy techniques.

2.3.2.1 Memory Copy Implementation

The memory copy recovery algorithm is indicated in Figure 2.3-3a.
If a computer disagrees upon output (Di) and it has no previous disagreements
within a fixed time interval At (TCi=O), then a memory copy is attempted.
Periodically on the order of every millisecond a small block of program data

is transferred to the disagreeing machine. This transfer is maintained at
a low duty cycle so not as to degrade the computations of the remaining compu-
ters. After transfer of the final block, which consists of variables necessary
to restart all computers in an initialized state, the memory copy state is
terminated and the disagreeing computer is brought back into operation. If
the disagreement recurs within a short time (TCi=1 and Di) the computer is
assumed to contain a permanent fault, is classified faulty, and the voter is
commanded to ignore any further outputs from the machine.

Two approaches are suggested for multiple faults:

1. If the state control is disabled during a memory copy
additional faults in other computers are ignored during
the memory copy. As long as sufficiently many additional
computers do not fail such that the voted output remains
valid, correction of additional faults can be deferred
until the current copy is completed.

2. A second approach is to re-initialize the memory copy
when an additional fault occurs, and perform the memory
copy into both (or all) the defective machines.

Residual Duplex

Items 3, 4, and 5 in the memory copy algorithm (Figure 2.3-3a)
correspond to actions taken in the residual duplex and simplex configurations,
i.e. when only two or one computers remain functional. The only mechanism
available for transient correction when one or two computers remain
functional is a system restart (3,5). If in the residual duplex case a

2-52

1) If TC.=O and D. and pw>2 then Memory Copy*

2) If TCi,j=O and Di1j and pw>2 then Wi-F

3) If TC. =O0 and D. and pw=2 then Restart

4) If_ T ,j= and Di j and pw=2 then Diagnose**

5) If T.=d and D. and pw=l then Restart

a) MEMORY COPY ALGORITHM

1) If TC.=O and D. and pw>2 then Rollahead

2) If TCi=l and Di and pw>2 then Memory Copy

3) If TCi=2 and Di and pw>
2 then W.*F.

4) If TC i,j=O and Di j and pw=2 then Rollback

5) If TCi,j=l and Di, j and pw=2 then Diagnose**

6) If TCi=d and Di*** and pw=l then Rollback

b) ROLLAHEAD-ROLLBACK-COPY ALGORITHM

*Memory Copy

1) If P and Blockcount< k then Transfer Data Block

2) If P and Blockcount =k'then Exit Memory Copy

**Diagnose Select machine which delivers correct result

1) If i=ok, j=Fail then W j*F
.F I Select One

2) If i=ok, j=ok then W. F.

3) If i=Fail, j=Fail then Wj.Fj Arbitrarily

***BITE-Indicated Fault

DEFINITIONS

p=periodic interval k=maximum number of blocks

thD i=disagreement in TC i=tally count for ith computer

i computer

pw=number of working Wi-Fi=classify ith computer as

computers failed

FIGURE 2.3-3 AUGMENTED EEM RECOVERY ALGORITHMS

2-53

system restart is unable to correct the disagreement between the two

machines, a diagnosis is commanded (4) and, if it is successful, the

system degrades to simplex operation.

2.3.2..2 Rollahead - Rollback - Copy Implementation

A recovery algorithm which includes rollahead, rollback, and

memory copy techniques is indicated in Figure 2.3-3b. When more than two

computers are functioning (pw72) the transient recovery sequence consists

of program rollahead followed (if unsuccessful) by memory copy. If the fault

persists after a memory copy it is assumed permanent, the computer is classi-

fied as faulty, its outputs are excluded from the vote, and further recovery

attempts are abandoned.

When two computers remain functional (pw=2) a rollback is attempted

for transient correction. If unsuccessful, both computers are commanded to

run a diagnostic. One is selected and, if successful, the computation continues

in simplex with program rollback upon BITE-detected faults for partial transient

protection.

2.3.3 A Comparison of MHW and HASW Implementations

The principal difference between the mostly hardware and hardware-

aided software configurations is that in the former the system state informa-

tion and recovery decision mechanism resides in a central "hard core"

In the HASW configurations this information and control mechanism is distributed

and replicated within the software of the individual computers. The tradeoff

between the two implementation types is largely a matter of cost.

Implementation costs in the mostly hardware case includes not only

augmentation of the EEM units, but also a mechanism for protecting against

and correcting transient errors in the augmented EEMs. A process of voting

on all internal states (NMR synchronization) is required as well as a well

defined AEEM restart in case of information loss. To protect against transients

it is advisable that the AEEM control states be maintained in non-volatile

storage. Thus the augmented EEM is considerably more complex than the HASW

EEM without augmentation.

2-54

The additional software necessary for HASW implementations with

respect to the mostly hardware case is estimated to require on the order of

1000-2000 words of storage. (Note that program diagnostics and in many

cases rollback-structured programs are required in both implementations).

Memory is allocated for most of the candidate computers in 8k

modules, thus the machine is procured with 16k or 24k or 32k words. Often

under these circumstances, additional memory exists beyond that required for

the flight programs and thus the implementation of HASW routines can be placed

in this extra "core space" at nominal extra cost. If this is the case (as

expected) for the RCS application, the HASW-type implementation is the most

cost-effective.

2-55

THIS PAGE INTENTIONALLY LEFT BLANK

2-56

3.0 EXECUTIVE STRUCTURE

The structure of the executive designed for the RCS study is

described in this section. The design goals for the executive are discussed

first. Then each module of the executive is described. Several scheduling

mechanisms are then presented and compared. Finally, the adaptability of

the design is considered.

3.1 DESIGN GOALS

Four design goals have been established for the executive. These

goals specify general guidelines for the executive design as well as indicating

a particular application in which the executive could be used. These goals

are to design an executive which:

1. Can be readily adapted as an executive model for all RCS

configurations under consideration.

2. Is general enough to support any reasonably foreseeable

*avionics application.

3. Makes clearly visible all the features required to support

a digital flight control application.

4. Makes available the necessary parameters for configuration

evaluations.

The RCS configurations under consideration in this study all use

hardware, software, and program-execution redundancy in varying degrees to

obtain fault tolerance. The modeling undertaken as part of the RCS work is

of a much broader scope than that.attempted in the past. This modeling not

only gives explicit consideration to both permanent and transient faults,

but also treats the actions of the relevant software. In considering the

relevance of the various portions of the software, it was recognized early

that the details of the actual applications programs have little to do with

the fault-tolerance of an RCS. However the executive structure is important

and thus must be considered.

Since this study is directed toward multicomputer systems rather

than encompassing multiprocessors, a single executive may be designed, for

use in each of the computers of the configuration. Thus,.the first design

3-1

goal ensures that the executive which is designed can be used in all computers

of all configurations being considered, adapted as required by the configuration.

An earlier study [RATN 73] has shown that the computational environ-

ment imposed by avionics applications is such that the majority of computations

must be performed periodically, although the computations performed will vary

with the phase of the flight and the mode(s) used. Thus the computational

requirement imposed by the avionics environments in which the computer systems

being considered will operate involves primarily periodic, cyclical tasks of

varying complexity, rate, and duration. The processing of occasional aperiodic

tasks is also required. The executive has been designed to meet both of these

requirements and thus be generally applicable to all avionics applications.

The structure of the executive which has been designed is applicable to all

applications, but details are application-dependent to varying degrees. The

digital flight control application is being used as an example of a specific

application to ensure that the general design can be specified in some degree

of detail for one specific application. Thus, the second and third design

goals, are complementary.

3.2 SKELETON MODULES

The design of an executive for a fault-tolerant computer system

includes all the features required for an executive designed for a conventional

(i.e., non-fault-tolerant) computer plus those unique features required in

the software to implement the fault-tolerant capability designed into the

fault-tolerant system. The Reconfigurable Computer Systems (RCS's) under

consideration by this study are, by definition, fault-tolerant computer

systems. Although each different RCS organization will impose different

requirements on the executive, a common skeleton can provide the basis for

the entire series of RCS executives since the same applications programs will

be performed on all RCS's.

The executive skeleton consists of four distinct modules, each

providing one of the four basic facilities required in an executive for an

avionics computer. The four modules are the scheduler, the input-output

driver, the interrupt processor, and the machine error handler. Each of the

modules is described in the following subsections, followed by a discussion

of the interaction between pairs of the modules. A block diagram of the

executive skeleton is shown in Figure 3.2-1.

3-2

TIME INPUT- OUTPUT
INTERRUPTS INTERRUPTS-

.SCHEDULER INPUT - OUTPUT
DRIVER

PROVIDESCHEDULE PROVIDESCHEDULE .INPUT-OUTPUT
APPLICATIONS ROUTINES

PROGRAMS

z z
O O

05 z

a.

ER PROGRAM ERROR
ETC. INTERRUPTS

INTERRUPTS

INTERRUPT MACHINE ERROR

PROCESSOR PROGRAM SUSPENSION HANDLER
(& TERMINATION)

PROCESS EXECUTIVE TERMINATION) RECOVER FROM
RETURN AND ERROR MACHINE AND
EXCE PTION ERROR PROGRAM ERRORS
INTERRUPTS DETECTION

FIGURE 3.2-1 THE EXECUTIVE MODULES USE INTERMODULE CALLS FOR
SERVICES WHICH ARE REQUIRED BY ONE

MODULE BUT PROVIDED BY ANOTHER

3-3

3.2.1 Scheduler

The scheduler provides for periodic execution of programs in the

computer. Most applications programs run periodically, although the frequency

and duration of each program may be different. Collectively, the applications

programs must deliver correct periodic outputs at the time required. The

scheduler insures that each program will be run when required.

The flight of an aircraft can be partitioned into phases and modes.

Phases of flight include takeoff, ascent, cruise, descent, landing, etc. The

modes of flight include manual and autopilot. The subset of active programs

(out of the set of all loaded programs) is determined by the phase and mode

of the flight. Whenever a phase or mode change is made, the subset of active

programs may change.

Once the subset of active programs is determined, the programs are

scheduled for periodic actuation. Tables and queues are maintained to

accomplish the scheduling function. A priority is also maintained for each

active program to determine whether an asynchronous program activation

request will be honored when it occurs.

3.2.2 Input-Output Driver

The input-output driver provides the external communication capa-

bility for the other executive modules and the applications programs.

Although input-output could be performed directly by the requesting program

in many cases, the use of the executive skeleton as the basis for additional

fault-tolerant features requires that all input and output be provided

by this module of the executive. Both aircraft-computer communication and

intercomputer communication are provided. The former is characterized by

primarily one-word (single) data transfers while the latter is characterized

by primarily multi-word (block) data transfer.

The aircraft-computer communication consists of sensor and control

panel inputs and actuator and display console outputs. These communications

generally require only one computer word (or a part of a word) to hold all

the data. Also, these communications usually require no waiting for the

device. Thus, single word input/output is usually accomplished immediately

and no further action is required after returning to the calling program.

The intercomputer communication consists of data to be verified or

memory words to be loaded. When verification data are exchanged for checking

3-4

or voting, all pertinent state vector information must be communicated.

When a recovery is being attempted through use of a memory reload, a

significant portion of the memory may be affected, and thus, the volume

of data may be rather large. Furthermore, the communication channel (e.g.,

bus) may not be immediately available. Thus, block data transfers are

usually queued when the routine is called but completed as the channel

becomes available. The completion of the data transfer may set a status

variable or actuate a dormant program.

3.2.3 Interrupt Processor

The interrupt processor services all interrupts which are not handled

directly by other executive modules. Interrupts processed by this module
include executive requests and program exception interrupts such as fixed-
point overflow, floating-point exponent overflow, and division by zero. This
module also provides program suspension and resumption routines.

The executive request interrupt is processed by this module because
several different requests are multiplexed into the one interrupt. After
decoding the parameter of the request, the interrupt processor invokes the
program which will process the specific request which was received. The
program may be in another module or in the same module. After the request
has been processed, control returns to the program which made the request
unless the request resulted in a scheduling alteration.

The program exception interrupts are often maskable under program
control. When one of them occurs, the interrupt processor first determines
whether or not the interrupt will have any effect. If the interrupt is to
be ignored, the program is resumed immediately. If an algorithm is specified
(e.g., setting the result to zero for floating-point exponent underflow), it
is applied immediately and the program is resumed. If the program is to be
terminated because of the condition, control is transfered to the scheduler.

The program suspension and resumption routines are required for
saving and restoring the machine state when an interrupt occurs. Some
machines provide alternate register sets for the executive, thus minimizing
the functions of this routine. However, executive pointers, tables, and
queues must always be updated when switching programs.

3-5

3.2.4 Machine Error Handler

The machine error handler processes all program and machine errors

which occur. Even computers which are not designed with fault tolerance

as a design goal usually include address checks, memory parity checks, and

other self-checks. Some computers include self-test hardware which can be

used when an error is indicated. This module utilizes whichever hardware

features are available on the particular machine, combined with software,

to act upon any errors which occur.

Software errors (e.g., address out-of-range) which occur indicate

that either the program contains a design error or the program or its data

has been affected by a fault. Since programs used in aircraft applications

must be thoroughly verified before being put into use, the assumption must

be made that a hardware fault has occurred. (This decision could be modified

for program checkout on the hardware.) Thus, whenever a software error

occurs, the same procedure is followed as when a hardware error occurs.

Hardware errors (e.g., memory parity check) indicate that a failure

has occurred in the hardware. The resolution of the failure depends on the

fault-tolerance capability provided in the computer. If self-test is avail-

able, the module may be able to determine the error and reconfigure to

eliminate the error or set an indicator to cause erroneous outputs to be

ignored. If only minimal fault tolerance is provided, a degraded mode of

operation may still be possible.

3.2.5 Interaction

Each of the modules of the executive skeleton implements a logi-

cally complete and distinct set of functions. Every one of the modules,

however, requires functions in at least one other module. Thus, executive

modules communicate with each other just as applications programs communicate

with the executive modules. A brief discussion of the interaction follows.

The int:eraction is indicated on the block diagram of the executive skeleton

shown in Figure 3.2-1.

The scheduler is activated primarily by the time interrupts. The

scheduler is also used by the interrupt processor to activate and terminate

programs as phase and mode changes occur. It uses the program suspension

and resumption routines in the interrupt processor.

3-6

The input-output driver is activated primarily by input-output

interrupts. The interrupt processor passes applications programs input-output

requests to this module. The machine error handler can also request this

module to reload the memory. This module uses the program suspension and

resumption routines in the interrupt processor.

The interrupt processor is activated primarily by the executive

request and program exception interrupts. It is also used by all other execu-

tive modules for program suspension and resumption. It uses the scheduler to

activate and terminate programs and passes input-output executive requests

to the input-output driver.

The machine error handler is activated by hardware and software

error detection mechanisms. This module uses the interrupt processor for

program suspension and the input-output driver for memory reloading.

3.3 SCHEDULING MECHANISMS

The choice of a scheduling mechanism for an executive is the single

most important decision in the design. The selection of the scheduling mech-

anism affects other modules in various degrees. For the avionics application,

there exists a complete spectrum of executive scheduling mechanisms ranging

from totally synchronous to constrained asynchronous. A study has been made

[TSOU 73] which investigated five distinct scheduling mechanisms and their

applicability to the space shuttle and space tug, applications with computa-

tional requirements not too different from those assumed for this study. The

five mechanisms are investigated in detail and compared to each other as candi-

dates for the executives in various onboard computers. The mechanisms are

described here in sufficient detail to permit investigation of the effects on

simulation of selecting one scheduling mechanism over another for a general

avionics application.

The scheduling mechanisms considered can be differentiated by the

following three characteristics:

1. Fixed vs variable processing time intervals;

2. Fixed vs variable task execution order;

3. Polled vs interrupt-driven aperiodic event registration.

3-7

The synchronous executive, while limited in terms of flexibility

and growth, is conceptually very simple and its behavior is completely pre-

dictable. The synchronous mechanism utilizes fixed time intervals, fixed

execution order, and polled aperiodic event registration. The constrained-

asynchronous mechanism is the most flexible scheduling mechanism usable for

an avionics application. The constrained-asynchronous executive schedules

tasks on a demand basis. It thus provides a more flexible structure which

permits growth to be achieved more easily. This mechanism utilizes variable

processing intervals, variable task execution order, and interrupt registra-

tion of aperiodic events (even during periodic processing). There are a

number of intermediate designs which utilize various combinations of the

above approaches. These are the synchronous-with-asynchronous-overlay, hybrid,

and hybrid-with-external-interrupt mechanisms provide more and more flexibility.

It is not sufficient to differentiate between these scheduling mechanisms by

any one characteristic alone; all characteristics must be considered when

comparing the mechanisms. A description of each of the five scheduling

mechanisms being considered follows. Typical time lines for the various

mechanisms are illustrated in Figure 3.3-1. A comparison of characteristics 7

of the mechanisms is given in Figure 3.3-2.

3.3.1 Synchronous

The synchronous scheduling mechanism divides processing time into

fixed-length slots. Two types of computations are distinguished: minor-cycle

and major-cycle. Minor cycle computations are high-frequency tasks while

major cycle computations are low-frequency tasks, often of longer duration

than minor cycle tasks. The minor and major cycle computations are allocated

to fixed time slots, arranged to form one complete cycle for all major cycle

tasks. Each time slot is activated by an external interrupt. Some idle time

usually exists at the end of each time slot.

The minor cycle tasks may be scheduled in one of two ways. Either

the beginning of every time slot is used for minor cycle tasks or alternate

time slots are devoted entirely to minor cycle tasks. The major cycle tasks

are performed, one per time slot, either in the time remaining after minor

cycle computations in the first case or in the slots between minor cycle

computations in the second case. Two types of major cycle tasks exist:

3-8

Synchronous mM m M m M m M m M m M m M m Mc

Synchronous With m M m M m MA m m M m I m M I m MI
Asynchronous Overlay u

Hybrid m L m L m L Im Lm L m L m L m L

Hybrid With mi L m L m LI m Lm L I ml L m L m LExternal Interrupts
--- I - I --- I

ConstrainedA synhrConstrained. m L m L I m L m L I m I .LImlmL

LEGEND

m: Minor Cycle Computations L: List-Processed Computations
Mu: Unconditional Major Cycle J: Interrupts (Except Real-Time)
Mc: Conditional Major Cycle Computations I : Minor Cycle or Periodic Computation Initiation

,-: Variable Boundary
MA: Aperiodic Major Cycle Computations

FIGURE 3.3-1 EXECUTIVE SCHEDULING MECHANISM TYPICAL TIME LINES

unconditional and conditional. The unconditional major cycle tasks are

executed every time their time slot occurs. The conditional major cycle

tasks are performed only if specified conditions are met.

3.3.2 Synchronous with Asynchronous Overlay

The synchronous-with-asynchronous-overlay scheduling mechanism

eliminates the idle time associated with conditional major cycle tasks which

are not executed in the synchronous scheduling mechanism. With the overlay,

unconditional major cycle tasks are allocated fixed slots as before. Condi-

tional tasks, however, are scheduled by a master controller during time slots

which are allocated to it. In this way, conditional major cycle tasks are

executed on a priority basis rather than having to wait until the fixed time

slot arrives for processing. The synchronous-with-asynchronous-overlay

scheduling mechanism is the first to schedule any tasks other than by a fixed

time slot.

3.3.3 Hybrid

The hybrid scheduling mechanism combines the minor-cycle scheduling

of the synchronous scheduling mechanism with the list processing of the

asynchronous mechanism. An external interrupt is used to initiate the minor

cycle computations. The minor cycle tasks include a subsystem scanner which

registers events required to service subsystems requesting attention. As soon

as the minor cycle tasks are completed, the list processing (asynchronous)

mechanism regains control. Aperiodic tasks may be registered by the subsystem

scanner or by other aperiodic tasks. The hybrid scheduling mechanism is the

first to use the list processing mechanism which schedules aperiodic tasks and

the first to have variable minor cycle processing times.

3.3.4 Hybrid with External Interrupts

The hybrid-with-external-interrupts scheduling mechanism replaces

the subsystem scanner, in the minor cycle tasks of the hybrid mechanism, with

interrupts which are enabled during the asynchronous processing. The hybrid-

with-external-interrupts scheduling mechanism is the first to use any interrupts

other than a real-time interrupt which initiate minor cycle computations.

3-10

Scheduling Mechanism Synchionous Hybrid
with with Constrained

Characteristic Synchronous Asynchronous Hybrid External
Characteristic Overlay Interrupts Asynchronous

Processing Time. Intervals Fixed Fixed Va ble Vai e VariableVariable Variable Variable

Task Execution Order Fixed Fixed/ Fixed/ Fixed/ V ableVariable Variable Variable ari

Cycle, Position for Periodic
Computations Fixed Fixed Fixed Fixed Variable

Cycle Position for Aperiodic Fixed/
Computations Fixed Variable Variable Variable Variable

Aperiodic Event Registration Polled Polled Polled Interrupt Interrupt

Idle Time Distribution Dispersed Dispersed Concentrated Concentrated Concentrated

FIGURE 3.3-2 COMPARISON OF. EXECUTIVE SCHEDULING MECHANISMS

3.3.5 Constrained Asychronous

The constrained-asynchronous scheduling mechanism is the most

flexible which could be used in an avionics application. The constraints

applied include required precise, periodic computations; debugged, cooperating

programs; and a minimum number of interrupts. When this scheduling mechanism

is used, interrupts are enabled most of the time. The tasks are scheduled

using a cyclic list which contains entries such as interrupt-scheduled tasks,

studies, queues, and ordered lists. A real-time interrupt initiates a

special task which processes the high-frequency tasks which are on a special

ordered list. The constrained asynchronous scheduling mechanism is the only

one to allow interrupts at almost all times, even during the periodic high-

frequency computations.

3.3.6 Comparison and Contrast

The five executive scheduling mechanisms which are being considered

here range from the totally synchronous mechanism to the constrained asynchronous

mechanism with three other designs between. The synchronous mechanism is the

least flexible but easiest to verify. All computations are scheduled at a

fixed time and are limited to a specified amount of processing time. No

asynchronous processing is allowed and conditional tasks are allocated time

even if they are not run. The synchronous-with-asynchronous-overlay mechanism

improves on this by allocating some of the time slots to aperiodic event

scheduling. Thus tasks which are conditional can be scheduled only when the

conditions exist which as required for processing. The hybrid mechanism

goes one step further by allocating all non-minor-cycle time to asynchronous

scheduling. This is the first use of the list-processing algorithms employed

in the asynchronous mechanism. The hybrid-with-external-interrupts mechanism

uses interrupts to register aperiodic events rather than the polling mechanism

used in the other three mechanisms. The asynchronous mechanism allows interrupts

even during periodic events. A cyclic list is used to schedule tasks. Periodic

tasks are activated by a high-priority interrupt.

Thus it can be seen that the scheduling mechanisms considered range

from the synchronous in which everything is fixed to the constrained asynchronous

where everything is variable. The synchronous mechanism is the easiest to verify

3-12

because everything is fixed. As more asynchronism is introduced, verification

becomes more and more difficult because more and more variability. The asynchro-

ous mechanism, in which almost everything is variable, can never be totally

verified because the number of combinations of events is very large. All that

can be done is to test all branches in a reasonable number of ways.

The choice of an executive scheduling mechanism is made on the basis

of the environment, the machine capabilities, and the applications programs

requirements. Once the choice of an executive scheduling mechanism is made,

the other portions of the executive can be considered.

3.4 ADAPTABILITY

Adaptability is an important design goal for the executive. This

goal can be interpreted in two different contexts: configuration adaptability

and scheduling adaptability. Configuration adaptability is the ability to adapt

to any configuration considered by the RCS study. Each different configuration

imposes a slightly different set of requirements upon the executive although

each configuration accomplishes the same tasks for the avionics environment

in which it resides. Thus adaptations of the same executive skeleton should

provide executives for all configurations. Scheduling adaptability is the

ability to use any scheduling mechanism from totally synchronous to constrained

asynchronous. The synchronous scheduling mechanism implements a strictly fixed

time and order for task processing while the constrained asynchronous scheduling

mechanism permits demand scheduling except for strictly-periodic, high-frequency

events.

The executive skeleton described in this section provides both

configuration adaptability and scheduling adaptability. The same basic set

of four modules (scheduler, input-output driver, interrupt processor, and

machine error handler) is used for all executives. Additional modules and/or

enhancement of the basic four modules are provided to satisfy the requirements

imposed by the various configurations. The various scheduling mechanisms can

be implemented internally within the scheduler module with minor changes in

the interrupt handler module. It should be noted that even for the totally

synchronous executive, machine error conditions must be processed immediately

when they occur.

3-13

The RCS configurations being considered by this study are all

to be used in an avionics environment. The results of the study, however,

should be usable for other environments such as spacecraft, process control,

etc. Thus, although the executive is designed to support an avionics environ-

ment, it is not constrained to that environment. Even in the avionics

environment, a wide range of applications exists. Furthermore, the purpose

of undertaking the design of an executive is to provide a model for the

simulator which is being written. Thus the level of design of the executive

is that which is necessary to support a model for the simulator. The level

which has been chosen, the module level, provides complete generality while

still specifying the structure and functions of the executive.

3.5 SOFTWARE STRUCTURE AND FAULT-TOLERANCE IMPLEMENTATION

3.5.1 Software Structure Considerations for a Duplex System

It is important to study the impact of the executive scheduling on

a duplex system since adaptive configurations are able to degrade to duplex.

The structure of the software used in a duplex computer configura-

tion has an effect on the probability of recovery from a fault given detection

of an error. The software features which must be investigated to determine

the effects include the executive scheduling mechanism, a typical cycle of

minor-and major-cycle computations, redundancy requirements, and tradeoffs

which must be made between conflicting requirements.

3.5.1.1 Executive Scheduling Mechanisms

Evaluation of scheduling mechanisms which could be used in

a duplex computer configuration leads to a dichotomy of the mechanisms

presented in Section 3.3. The breakpoint is the inclusion of an

asynchronous mechanism which does not require segmenting of major cycle

computations into pieces which can be completed between Real Time

Interrupts (RTI's). The synchronous and synchronous-with-asynchronous-

overlay mechanisms do require such segmentation. These mechanisms

will be called synchronous-type mechanisms in this discussion. The

hybrid, hybrid-with-external-interrupts, and constrained-asynchronous

mechanisms do not require segmentation of major-cycle computations and

will be called asynchronous-type mechanisms.

3-14

The requirement that all programs running on a duplex

system must incorporate rollback has a significant effect on the

choice of a scheduling mechanism. For minor-cycle computations, a

rollback point can be established at the end of each iteration. If

new data are input immediately prior to the next computation cycle,

the input mechanism must be protected separately. In any case, it is

assummed that the previous state vector and the new input data are

correct and available at the beginning of a minor-cycle computation.

If the minor cycle completes successfully, a new state vector is stored

and the major-cycle computations are performed. If an error occurs, the

minor-cycle computations can be repeated, possibly at a cost of delaying

the major-cycle computations. Thus the rollback structure of minor-cycle

computations corresponds with the scheduling of the computations for any

of the scheduling mechanisms (except for the constrained-asynchronous

mechanism where minor-cycle computations can be interrupted briefly).

For major-cycle computations, the choice of a synchronous-type

or asynchronous-type scheduling mechanism has significant consequences.

If a synchronous-type scheduling mechanism is chosen, then the major-cycle

computations can have a rollback point at the end of each segment. At the

end of a segment the state vector is known and is usually reasonably small.

Each segment of a major-cycle computation is similar to the minor-cycle

computations in that the rollback structure and the scheduling of the

segment correspond. If an asynchronous-type scheduling mechanism is

chosen, the situation is entirely different. Rollback points will not

correspond temporally to processing segments. Zero, one, or several

rollback points may be established during one computation period.

Filrthermllre, there may not be time to complete a rollback before another

minor-cycle is initiated. A rollback point could be forced by storing

every variable the program uses when an RTI occurs at a cost of time and

memory.

The interaction between the minor-cycle computations and the

major-cycle computations depends on the choice of a scheduling mechanism

and comparison period for major-cycle computations. If a synchronous-

type scheduling mechanism is chosen, the rollback structure corresponds

3-15

to the scheduling so each execution segment is independently protected

by its own rollback mechanism. If an asynchronous-type scheduling

mechanism is chosen, a fault can cause a rollback in more than one program

segment. If a fault occurs during a major-cycle computation which is

interrupted by a minor-cycle computation, the minor-cycle computation can

get an error, causing rollback and then the major-cycle computation can

get an error when it reaches a rollback point, resulting in another rollback.

The comparison period for major-cycle computation determines the length

of rollbacks. If a comparison is made only when an output occurs, the

entire computation must be repeated if an error occurs. If rollback'

points with comparisons are inserted at a reasonable number of places in

each major-cycle computation, errors will be caught sooner and rollbacks

will be shorter. Also, the chance of an error affecting both a minor

and major cycle is reduced if more rollback points are used. However,

the time required for the complete major-cycle computation is increased.

3.5.1.2 Typical Computational Cycle

A typical computational cycle consists.of all processing

between two consecutive Real Time Interrupts (RTI's). Immediately

following an RTI, minor-cycle processing is performed. After the

minor-cycle processing is completed, the remaining time before the next

RTI is used for major-cycle processing.

The minor-cycle processing consists of high-frequency

activities which must be performed regularly. These activities include

input, calculation, checking, and output of high-frequency control

information and memory copy when it is active. The input, calculation,

checking, and output must be protected by rollbacks. Furthermore, the

original input should by used again if a rollback occurs. A way of

accomplishing this is to use three minor-cycle periods for a complete

iteration. A minor cycle would begin by issuing the output data

generated by the calculations during the last minor cycle. Calculations

would then be performed on input data obtained during the last minor

cycle with checking of the results. Then input would be obtained for

the next minor cycle. Finally, a rollback point would be established

for all minor-cycle processing up to that point.

3-16

The last portion of a minor cycle is devoted to memory copy

when it is active. If the other computer has suffered a suspected

memory failure, and if memory copy is considered a viable option for

the application, the memory of one computer can be copied to the other.

When the memory copy is active, however, the system is running in the

simplex mode, since one computer contains a fault. Thus no rollback

is included in the programs which implement memory copy. A fault in

the sending computer during memory copy would constitute a second fault,

while another fault in the receiving computer would not change its

faulty status. During each minor cycle, as many words as possible would

be transmitted, subject to the limitation that the multiplexed bus must

be available for input and output during the next minor cycle.

When the minor-cycle processing is successfully completed,

major-cycle processing is initiated or resumed, depending on the scheduling

mechanism. The major cycle continues until it completed or is terminated

by another RTI, again depending on the scheduling mechanism.

Major-cycle processing consists of low-frequency activities which

occur regularly and aperiodic activities which respond to external

or internal stimuli. If no other major-cycle processing is required,

self-test is run. The self-test may also be scheduled as one of the

regular major-cycle activities to insure a minimum amount of self-test.

Major-cycle computations tend to be longer than minor-cycle computations.

Major-cycle computations would be likely to have several rollback

points in a single task. As an absolute minimum, rollback points would

be required after input, calculation and output. The rollback point

after input would protect the input. More than one rollback point

during calculation, with checking, would prevent completely restarting

the task in case an error occurred. Finally, a rollback point after

output would prevent repeated outputs.

The rollback structure of a period between two RTI's has

three distinct sections. During the minor-cycle processing preceding

the memory copy, all computations can be protected by a single rollback

point at the end. Once this rollback point is established, the second

3-17

section, the memory copy, is initiated if it is active. As stated above,

the memory copy is not protected by rollback. Finally, the major-cycle

computations each have one or more rollback points which may or may not

correspond to RTI intervals, depending on the scheduling mechanism.

3.5.1.3 Redundancy Requirements

The use of duplex redundancy imposes three requirements on

the hardware and software which are not required in a simplex system.

First, increased memory is needed for state vector storage and comparison

programs. Second, increased execution speed is required for time to

do the same function. Third, rollback must be included in the software.

In addition to these three requirements, reconfiguration mechanisms must

be provided if the duplex operation is part of an adaptive system which

degrades from TMR to duplex to simplex.

The increased memory required for duplex redundancy is used

to store the state vectors at program rollback points and for programs

which compare state vectors control reconfiguration. The state vectors

must be saved by double buffering or an equivalent technique which

preserves the information from a previous rollback point until a new one

is established. Programs are also required to store the state vector and

to reload it from the same area when a rollback is required. These programs

may be executive routines provided for use by application programs or code

in each of the application programs themselves. It is preferable for the code

to exist in a set of executive routines to minimize duplication and to provide

for adaptive redundancy by reconfiguration.

The increased speed is required to provide time for storing

and comparing the state vectors. The time which is required to store

the state vectors depends on the length of each state vector which is

stored and the frequency at which they are stored. Increased time is

also needed to compare the state vectors when they are stored and/or

compare outputs before they are issued to aircraft actuators. When

a failure occurs, time is needed to reload the state vector, repeat the

computation which was in progress when the error occurred.

3-18

Rollback capability must be provided for programs running

on a duplex computer configuration in order to determine the faulty

computer when an error occurs. When the results of the two computers

differ, each must rerun the program first to check for a transient error.

If the faulty computer cannot be determined, a self-test must be used.

When the faulty computer is determined, it must be removed from actively

controlling the aircraft. Then the remaining good computer must continue

in the simplex mode.

An extra redundancy requirement is imposed if adaptive

redundancy is being used. Some additional speed and memory will be

required for reconfiguration. The system life will be maximized by

progressively degrading from TMR to duplex to simplex as failures occur.

If a failure is due to memory damage, memory copy may be used to correct

the fault and upgrade to a mode using one more computer. Changing

modes, however, requires special considerations. Adaptive TMR requires

rollahead while duplex requires rollback. The same code can be used to

save and compare the state vectors. The primary difference is whether

the segment in which the error occurred is repeated or the state vector

is corrected and the program continues.

3.5.1.4 Tradeoffs

The three major tradeoffs which must be considered when deter-

mining the value of p for a duplex configuration are the scheduling mech-

anism, the frequency of rollback points, and the lengths of the state

vectors. In all cases, the software influences the v2w2 factor (see Section

5.5.1), the probability of correct recovery given detection and correct

diagnosis of the faulty unit. A summary of the tradeoffs and the effects on

v2w2 is presented in Table 3.5-I.

The choice of a scheduling mechanism has a significant effect on

v2w2 . If a synchronous scheduling mechanism is used, the rollback segments

can be established at the end of each time slot. Furthermore, a synchronous

scheduling mechanism has idle time distributed to a part of each time slot.

Thus the synchronous scheduling will yield a higher value of v2w2 since

recovery will be faster (at most one rollback series is needed per error)

and the time is available for immediate rollback without delaying other

computations (due to the distributed idle time).

3-19

ITEM LARGER v2w2 SMALLER v2w2

SCHEDULING MECHANISM SYNCHRONOUS ASYNCHRONOUS

Faster Recovery Slower Recovery
Distributed idle Time Concatenated idle Time

Number of Rollback Points More Less

Length of Rollback Segments Shorter Longer

Faster Recovery Slower Recovery

State Vq-tor Length Shorter Longer

Faster Slower

TABLE 3.5-I SOFTWARE EFFECTS ON v2w2

3-20

The frequency of rollback points also affects v2w2. The greater

the number of rollback points which are inserted, the faster the recovery

will be when a rollback is required. At the extreme, the length of the

state vector and the time required to store it can become significant, but

in most cases this is small relative to the processing time of the rollback

segment. A greater number of rollback points also increases v2w2 when

transient duration is considered. If a transient is of relatively-long

duration, more than one rollback may be required before the transient fault

disappears. The shorter the length of the rollback segment (greater the

number of rollbacks), the faster the successful one will complete.

Finally, the lengths of the state vectors affects v2w2 in two

ways. Shorter state vectors require less memory which results in a larger

v2w2 value. Also, the shorter the state vector, the shorter the time needed

to save and restore it, resulting in greater probability of recovery in time.

3.5.2 Software Structure Considerations for a TMR System

Although this section considers the TMR case, its conclusions

are also valid for 4-MR and 5-MR systems.

This section considers for TMR the same topics which were con-

sidered for the duplex configuration in Section 3.5.1. The probability of

recovery given detection, v2w2, is used-only in adaptive TMR when running

in the duplex mode. The topics discussed in this section are executive

scheduling mechanisms, minor-and major-cycle computational requirements,

redundancy requirements, and tradeoffs between conflicting requirements.

3.5.2.1 Executive Scheduling Mechanisms

The executive scheduling mechanisms which could be used in a TMR

configuration again are separated into the synchronous-type which require

segmentation of major-cycle computations into pieces which can be completed

between Real Time Interrupts (RTI's) and the asynchronous-type which do not

require segmentation. Programs running on an adaptive TMR configuration,

which can degrade to duplex, require rollback segmentation. When the system

is used in the TMR mode, rollahead is used when an error occurs, since a

majority vote is possible. When the system degrades to the duplex mode,

rollback is used when an error occurs.

3-21

For minor-cycle processing, a rollahead/rollback point can

be established at the end of the minor-cycle computation period for

any of the scheduling mechanisms. For major-cycle processing, however,

rollahead/rollback points will correspond temporally to processing

segments only if a synchronous-type scheduling mechanism is used. If

an asynchronous-type scheduling mechanism is used, zero, one, or several

rollahead/rollback points may be established during one computation period.

If a synchronous scheduling mechanism is used, an error

which occurs will only affect the active processing, since rollahead/

rollback points will be established at the end of each processing segment.

If an asynchronous-type scheduling mechanism is used, however, an error

may affect an interrupted major-cycle computation as well as a minor-cycle

computation. In the TMR configuration no major problem exists when this

occurs, since rollahead requirements are not critical in comparison to

rollback requirements. The time required to update the state vector is

small relative to the time needed to repeat a program segment.

3.5.2.2 Typical Computational Cycle

The structure of a typical computational cycle, which consists

of all the processing between two Real Time Interrupts (RTI's), does not

vary with configuration changes. Minor-cycle processing always immediately

follows the RTI, after which the major-cycle processing uses the remaining

time before the next RTI.

Although the structure of a typical computational cycle

is more dependent on the scheduling mechanism used than on the amount

of redundancy the system is using (TMR, duplex, etc.), the details of the

rollahead/rollback and reconfiguration code are different. In the TMR

configuration, the faulty computer can be identified by a majority vote.

A rollahead is used first to attempt to correct the faulty computer.

If this fails, a memory copy can be tried. In any case, no significant

amount of time is lost while applying these procedures. The two computers

which do not have any errors continue to perform the required computations

while also attempting to correct the faulty computer.

3-22

3.5.2.3 Redundancy Requirements

Redundancy requirements for TMR include memory, speed and

rollahead. Increased memory is required for programs which compare

the state vectors at rollahead points. Increased execution speed is

required for state vector correction. Rollahead is used to correct a

faulty state vector when it is damaged by an error. The use of adaptive

TMR also requires reconfiguration mechanisms which can change the system

to a duplex mode of.operation and back to TMR.

The only requirement for additional memory in a TMR configuration

over simplex is for the checking and reconfiguration programs. One

important function is the comparison of state vectors at the end of a

rollahead segment. If an error is detected, the erroneous state vectors

corrected by a majority vote and computation continues (rollahead).

If adaptive TMR is used, provisions must also be included for reconfiguring

to duplex mode when an error is detected. The system will run in the

duplex mode while attempting to restore the faulty computer to operational

status. If the faulty computer recovers, the TMR mode of operation can

be resumed, otherwise duplex operation continues.

A moderate speed increase is needed for state vector

comparison, rollahead and reconfiguration if used. The state vector

comparison is a short task. If an error is detected, the state vector

can be corrected by using a majority vote among the three computers.

Although this task is also short, it is essential that it be performed

rapidly, since all system computation is suspended during rollahead.

The reconfiguration process also must be rapid when it is required,

since no other activity may be in progress during reconfiguration.

The incorporation of rollahead in programs running on a

TMR configuration provides the capability of restoring a faulty

computer to service when a transient error occurs. When an error is

detected in a state vector, the state vectors in .the two good computers

can be used to correct the state vector in the faulty computer. If an

error remains after rollahead, the system can be reconfigured to duplex

3-23

while the memory of the faulty computer is reloaded. If the error

is removed, the system can again be reconfigured to TMR.

3.5.2.4 Tradeoffs

The two major tradeoffs which must be considered for an

adaptive TMR configuration are rollahead/rollback structure and the

memory copy option.

There are essentially four different TMR configurations

which can be considered, each increasing the recovery mechanisms

provided. The basic configuration is classical TMR with no recovery

for a faulty machine. Some improvement can be expected if rollback

is included in each of the computers with comparison with the state

vector of the other machines. A better configuration includes rollahead

rather than rollback so that an erroneous state vector is corrected by

a majority vote and no time is lost for recovery. Finally, the inclusion

of memory copy would permit correcting damaged memory words in a computer.

All configurations except the classical TMR can be adaptive so that they

degrade to duplex and then simplex as permanent failures occur.

The use of adaptive TMR requires that programs include

rollback capability for use when running in the duplex mode. If

rollback rather than rollahead is used for TMR, the same mechanisms can

be used for duplex and TMR operation. The availability of the third

computer, however, provides a voting capability which can be used to

eliminate the time penalty imposed by rollback. The cost is in extra

memory for the rollahead mechanism and extra complexity which is introduced

into programs which must include provisions for using either rollahead or

rollback.

The inclusion of a memory copy capability requires time,

memory, and complexity. Time must be provided during each minor cycle

when memory copy is active to transmit words between computers.

Memory is required for buffer space and for programs which accomplish

the data transfer. Also, additional reconfiguration complexity is

introduced. The advantage of using memory copy, however, is that a

computer in which a transient fault damages memory may be corrected

3-24

and the configuration returned to TMR, resulting in correction of errors

by rollahead rather than rollback. Thus, there will be three good

computers operating in case a fault occurs in one of the computers

which did not have the initial memory fault.

The same considerations which were discussed in Section

3.5.1 pertaining to effects of software on p are also applicable to

adaptive TMR degraded to the-duplex mode. As can be seen from Figure

3.5-1, all software considerations ultimately lead to a consideration

of the recovery time. With three computers running, at least two of

which are good, recovery is immediate by voting, thus software

considerations are not involved until the system degrades to duplex

operation.

3-25

THIS PAGE INTENTIONALLY LEFT BLANK

3-26

4.0 MEASURES OF FAULT-TOLERANCE

4.1 THE CONCEPT OF FAULT-TOLERANCE

4.1.1 The Reliability Problem for Computers

The reliability problem in computer operation is caused by

imperfections in the physical implementation of the logic structure.

Reliability theory defines the reliability of a system as the probability

of correct operation up to the "mission time" t=T, given that the system

was operating correctly at the "starting time" t=O. Computer systems are

a special case among all physical systems because in their case "correct

operation" means the correct execution of a set of programs, rather than

the continued functioning of a set of components of the system. It is the

purpose of this section to present a unified view of those aspects of computer

system design that are specifically directed toward the assurance of correct

program execution in the presence of physical imperfections (called faults)

in the components of the system. (AVIZ 72)

The following four criteria form an operational definition of

"correct execution of a set of programs:"

1. The programs and their data are not altered or halted

by faults;

2. The results of operations do not contain fault-caused

errors;

3. The execution time of each program does not exceed a

specified limit;

4. The storage capacity that is available for each program

remains above a specified minimum value.

It is to be noted that the definition excludes the question of correctness

of the programs and of accuracy of the algorithms, both of which are separate

fields of study.

The set of programs and data, the definitions of required operations,

the time limits for program execution, and the storage requirements are

specified by the users of the system. The goal of the designer is to raise

4-1

the system reliability (i.e., the probability of correct execution of

these programs) to an acceptably high value, given that faults may occur

during execution. Such faults are caused by three classes of physical events

that affect the hardware:

1. Permanent failures of computer components;

2. Intermittent malfunctions of components;

3. External interference with computer operation.

When these events occur, they cause logic faults, defined as the deviations

of one or more logic variables within the computer system from their design-

specified values.

4.1.2 "Fault-Intolerant" Design for Reliable Operation

There exist two complementary approaches that can be employed to

attain satisfactory reliability of computer systems. They are designated

as: 1) fault-intolerance, and 2) fault-tolerance, respectively.

Fault intolerance is an approach that aims to reduce the probability

of occurrence of the first fault during a specified time interval OtsT to

an acceptably low value. In this approach the system is designed without

redundancy, and every component of the system must function correctly in

order to assure correct program execution. The procedures which lead to the

attainment of "fault-intolerant" reliable systems are:

1. The most reliable components are selected for the system

within the existing cost and performance constraints;

2. Proven techniques are employed for the interconnection of

components and assembly of subsystems;

3. The system is packaged to screen out the expected forms of

external interference;

4. Quantitative prediction of the system reliability is made on

the basis of known or predicted failure distributions and

rates for the components and interconnections.

In the "purely" fault-intolerant (non-redundant) design, the probability of

fault-free hardware operation is equated to the probability of correct program

4-2

execution. This design is characterized by the decision to invest all

the reliability resources into procurement of high-reliabilitycomponents

and refinement of assembly and packaging techniques.

4.1.3 Design of "Fault-Tolerant" Systems

An alternative to the "purely" fault-intolerant approach is

offered by the use of various forms of redundancy. Known as fault-tolerance,

this is an approach that increases computer system reliability by the use

of design techniques that allow faults to occur without disrupting the con-

tinued correct execution of its programs. Fault-tolerance does not entirely

eliminate the need for reliable components; instead, it offers the option

of allocate part of the reliability resources to the use of redundancy. The

end goal of a fault-tolerant design is either: 1) a system reliability

prediction that cannot be attained by the purely fault-intolerant design; or

2) a system reliability prediction that matches the purely fault-intolerant

design at a lower overall cost of implementation.

A fault-tolerant computer system is defined as possessing the

following three attributes:

1. It consists of a set of components (hardware) and programs

(software);

2. It is initially free of design errors;

3. It executes its set of programs correctly in the presence

of faults.

The first attribute stresses the fact that the ability of a computer system

to continue operating correctly in the presence of faults depends not only

on the properties of the hardware, but also on the nature of the software--

both the system programs and the user (application) programs. For example,

the ability to recover from the errors caused by transient faults frequently

depends on special restart features incorporated in the system software as

well as on proper partitioning and state vector storage of user programs.

The second attribute requires that design errors be eliminated from

both hardware and software prior to the initiation of fault-tolerant computing.

Design errors are caused by errors in the translation of the original system

4-3

specifications into the operational forms. They are eliminated by validation

of the hardware and software designs prior to their operational use. Since

a complete a priori verification cannot yet be assured, computer systems also

need provisions to detect and trap various abnormal conditions during operation

which may be symptoms of remaining design errors. A completely fault-tolerant

operation is attained only when all design errors are eliminated from the system.

The third condition for fault-tolerant computing postulates correct

execution of the entire set of programs in the presence of faults. Program

errors that are caused by faults in the hardware can be avoided or corrected

by means of protective redundancy. Protective redundancy is introduced into

the computer system in three forms:

1. Additional hardware (hardware redundancy);

2. Additional programs (software redundancy);

3. Repetition of machine operations (time redundancy).

These redundant features would not be needed in a fault-free computer. Given

that faults will occur in the hardware, the redundant features provide a

fault-tolerant computing system, which carries out its programs correctly in

the presence of faults. Partial fault-tolerance ("graceful degradation")

results when one or more programs fail to satisfy criteria (1) or (2), and

also when some (or all) programs fail to satisfy criteria (3) or (4) for

correct execution (Paragraph 4.1.1).

Research results and design experience that have been accumulated

during the past decade show that the systematic introduction of protective

redundancy to provide fault-tolerance in a computer system can be accomplished

by the following design procedure.

1. The computational requirements are established and the

system architecture is specified with the initial assumption

that faults will not occur (the "fault-intolerant" design).

2. The classes of faults that are to be tolerated in the design

of (1) are identified, and the extent of tolerance is specified

for each class of faults.

4-4

3. The most cost-effective methods of protective redundancy

(time, hardware, software) are chosen to cover every class

of faults identified in (2), and the system architecture

is modified to incorporate the redundancy.

4. Analytic or heuristic techniques are applied to estimate

the extent of fault-tolerance that is provided by the methods

of protective redundancy selected in (3).

5. Checkout methods are devised to test all redundancy features

specified in (3). Where applicable, fault-t6lerance features

are extended to effect automatic maintenance of peripheral

systems that are.connected to or controlled by the computer.

Design experience has shown that the initial results of task (4)

often lead back to (3), and that several iterations of (3) and (4) may be

necessary to arrive at a satisfactory fault-tolerant system architecture.

The measures applicable to task (4) are discussed in the next section.

4.2 QUANTITATIVE SPECIFICATION OF FAULT-TOLERANCE

4.2.1 Classification of Measures

There are three distinct quantitative measures that can be applied

to measure the fault-tolerance of a computer system. They are:

1. The Discrete Fault Tolerance d

2. The Reliability R(t)

3. The Survivability S(t)

The discrete fault tolerance (DFT) d is a deterministic measure

that specifies how many faults of a given class can be tolerated by a computer

system or by a module of the system. The remaining two measures - reliability

R(t) and survivability S(t) - are probabilistic measures that predict the

probability of the system continuing its correct operation over a specified

time interval. The three measures are discussed in the following parts of this

section.

4-5

4.2.2 Discrete Fault Tolerance (DFT)

DFT is defined as the ability of a Module Set M to operate

correctly for at least d faults within the Module Set. The value of d

is an integer:

d(M) l

in a fault-tolerant module set M.

The DFT measure applies to permanent faults that are taken from

a specified Fault Set F. The fault set F must also be explicitly stated

for a complete DFT specification, i.e., we have:

d(M,F)!l

It is important to note that DFT is not a function of time, i.e.,

the probability of continued correct operation is stated to be unity as long

as not more than d faults from the fault set F occur within the module set M.

In practical DFT implementations for which d(M,F) 2 is specified it may be

necessary to specify a minimum time interval T between successive faults.

The interval is needed in the case of dynamically redundant systems that

require a recovery procedure to be completed before the next fault occurs.

This gives the specification

d(M,F,AT) 2

In the case of d = 1 the value of AT is not important, since the.second fault

is assumed to lead to system failure.

As defined above, the DFT is a "worst case" specification of fault-

tolerance, since d refers to the most critical set of faults. Given that

faults other than the "critical faults" occur, the module set M is usually

able to survive more than d faults.

The Module Set M itself refers to a redundant set of modules, in

which a "module" may be an entire computer, a functional subsystem, a logic

package, or even a single physical component of the system. For example,

d = 1 applies to both a "quadded" set (M1) of diodes (Figure 2.2-1) and to a

"TMR" configuration (M2) of complete computers (Figure 2.2-2). In both cases

the fault set F includes independent failures of single units. The "unit"

is one diode in M1 , and one computer or one voter in M2.

4-6

FIGURE 4.2-1 QUADDED DIODES, d = 1

Computer 1 Voter

Computer 2 Voter

Computer 3 Voter

FIGURE 4.2-2 COMPUTERS IN TMR CONFIGURATION

4-7

A common extension of the DFT specification is a "fail-safe"

condition for the (d+l)St fault. This means that after d faults have

occurred, the next "worst case" fault will lead to a systematic shutdown

of the function performed by the module set M. An example is the "FO-FO-FS"

specification, which translates to d=2 and a fail-safe condition for the

third fault in the worst possible location within the module set M. The

set M is usually composed of system "modules" in this specification.

S4. 3 PRelabihlit

The reliability R(t) also refers to a set F of permanent faults

that can occur in the hardware module set M. It is defined as the probability

that the set M will not experience a disabling hardware failure during a

specified "mission time" interval 05t<T. When a system is composed of several

module sets Mi with reliability R (t), it is usually assumed that all module

sets must survive in order for the system to survive, i.e.,

n
R(t) = 17 Ri (t)

sys i=l

for a system composed of n module sets M. (1_in).

The current state of the art in reliability modeling (BOUR 71)

specifies the reliability of a module set Mi with respect to a fault set F

in terms of seven parameters as

R(Mi,F) c fR (T,)*
1 -Cs

where the parameters are defined as follows:

q quota _ number of modules within the set M. required to survive

to time T

s sparing = number of modules provided as spares within Mi

c coverage = conditional probability [system recoversimodule fails]

f = discrete fault tolerance within one module of M.

_ power-on failure rate for one module of M.
1

The symbol A means "is defined as."

4-8

A power-off failure rate for one module of Mi

T A mission time

The analytic expressions for R(t) as a function of these parameters

are found in BOUR 71.

4.2.4 Survivability

It is known from experience that computer systems are also subject

to transient faults, which can terminate the correct execution of a set of

programs without causing a disabling hardware failure in the module set Mi.

Our goal is to incorporate the survival probability with respect to the

occurrence of transient faults into one probabilistic measure of fault-

tolerance that also contains the reliability R(t) as defined in the preceding

section. This measure will be called the survivability S(t) of the module

set M..

In order to include transient faults, it is necessary to define a

transient fault set F' which is described by two properties: their arrival

characterization and their duration (AVIZ 72). Both properties are statistical

in their nature. The arrival time of a transient fault is a discrete random

variable, while its duration is described by a probability density function.

These concepts are illustrated by specific examples in Section 5.2.

In a dynamically redundant system both transient and permanent faults

require a two step fault-tolerance procedure:

1. The existence of the fault is detected.

2. A recovery action takes place.

The detection of permanent faults may be by means of periodic diagnosis

or by concurrent error-detection procedures; only the latter are suitable to

detect transient faults. In the present study we assume concurrent error detec-

tion by a comparison of the outputs of two or,more copies of identical modules.

The same comparison procedure will detect errors caused by both transient and

permanent faults; however, at the time of detection it is not known which type

of fault has been detected.

The recovery procedure first must distinguish whether a permanent

or a transient fault has occurred, next the faulty module must be located

4-9

(identified). After fault location, an appropriate corrective action is

implemented. In the case of a transient fault, it consists of bringing the

affected module back into correct operation ("rollback" or "rollahead");

in the case of a permanent fault, it requires the continuing of correct opera-

tion without assistance from the failed module. The failed module may be

removed (e.g., in replacement, hybrid-redundant, adaptive systems), or it may

remain in the working module set (e.g., in TMR systems).

In the case of dynamically redundant systems, the time requirement

becomes an important parameter. We distinguish the following time intervals

that affect the success of recovery of a dynamically redundant system:

1. Time interval from the occurrence of the fault to its detection.

During this time the fault continues to affect the computation,

and errors may proliferate in the program being executed.

2. A specified time delay before the recovery action is initiated.

This delay is part of the recovery function; computing is

suspended during this time. The function of the delay is to

allow transient faults to end before recovery is initiated.

A fault that lasts longer will be treated as a permanent fault.

3. Time interval needed to execute the recovery action. At the

end of this interval the system is again in an operational state.

This state is identical to the pre-fault state after a successful

recovery from a transient. After a successful recovery from a

permanent fault, the system enters the specified "next state",

which depends on the redundancy technique employed.

The recovery action itself consists of two components:

1. The fault must be located by identifying the module that has

been affected by the fault.

2. The operational state must be re-established by an appropriate

technique.

Each component requires a time interval and has a certain probability

of unsuccessful execution. Furthermore, we note that certain complications

may occur after a transient fault has been detected:

4-10

1. Its duration may be long enough to overlap into the

recovery period and thus.create the false indication of

a permanent fault.

2. A second transient fault may occur before recovery is

complete. If it affects the same module, the effect is

the same as that of a "long" transient discussed above;

if it affects a different module, recovery may become

impossible. Both of these possibilities must be incorpo-

rated in a realistic model of a fault-tolerant system.

4.2.5 Quantitative Measures of Survivability

The preceding discussion has identified several functions that.

must be successfully executed before the system returns to its operational

state after a fault event. It is convenient to partition the probability

of successful system response to a fault into three components:

1. Detectability, denoted by u and defined as the probability

that fault is detected, given that it occurs;

2. Diagnostibility, denoted by v and defined as the probability

that the faulty module is correctly identified, given that

the fault has been detected;

3. Recoverability, denoted by w and defined as the probability

that the operational state is successfully re-established,

given that the fault has been located.

A time interval is associated with each one of the three measures.

It may be given either as a fixed value for a "worst case" upper bound, or as

a random variable with a specified density function.

In order to generate a reasonable estimate of the probabilities and

their associated times, we need some fundamental information about the hardware

organization and about the software of the fault-tolerant system.

The hardware information includes:

1. The description of the fault-detection mechanisms;

2. The description of the sequence of operational states after

permanent faults have been identified and recovery has succeeded;

4-11

3. The description of hardware aids for fault-location and

execution of recovery;

4. The description of inter-module communication paths that

may serve the purposes of fault-tolerance.

5. The identification of possible related failure modes (affecting

more than one module simultaneously) and their probabilities.

The software information includes:

1. Fault-tolerance features of the executive;

2. Nature of available test and diagnosis programs;

3. Scheduling mechanism for application programs;

4. Time available for recovery purposes;

5. Constraints on restarts (singular events, rel-time interrupt

scheme, etc.)

The probabilities and times for the survivability measures are

derived from the above information. Survivability then is determined either

by analytic modeling or by simulation, as described in the following Sections

5 and 6.

4-12

5.0 ANALYTIC MODELING

5.1 MODELING APPROACH

5.1.1 General

Available reliability models consider all faults to be of a

permanent nature, but some faults are known to be transient. We direct our

analytic modeling effort toward the inclusion of transient faults.

A transient fault is a fault that disappears some time after its

arrival. During its stay it alters the contents of registers and/or memory

and/or disrupts the normal sequence of program execution. We recover from

.a transient that has passed by restoring altered data and/or program and

by bringing the recovering computer into synchronization with the fault-

free computers.

5.1.2 Solution Approach

We approach the problem by drawing a state diagram representing

the fault/recovery status of the system. Each state represents the number

of fault-free units in the system and the level of fault recovery being

undertaken. The transitions between states represent the occurrence of

status changing events. The events are random in general so that the state

diagram is probabilistic in nature.

Such a state diagram is illustrated in Figure 5.1-1 for an

enhanced TMR configuration. Enhanced TMR differs from classical TMR in

that transient fault recovery is provided. The system begins a mission

time t=O in the no-fault state, and we wish to find the probability of

arriving in the system failure state before t=T, the mission length. We

study this simple model to provide insight into the inclusion of transient

faults into more complex models.

From the no-faults state a transient fault moves us into the

transient recovery state. From the transient recovery state one of three

things may occur:

1. Successful recovery -- go to No-Faults.

2. Transient mistaken for a permanent -- go to One Computer

Faulty.

3. Fault in a previously fault-free computer during recovery --

go to System Failure.

5-1

Note that a fault in a fault-free computer during recovery leaves a TMR

system with two faulty computers. We make the assumption that a TMR system

fails if two computers are faulty.

A permanent fault will certainly be interpreted by the recovery

procedure to be permanent. Therefore, for analysis purposes, a permanent

fault in the no faults state moves us to the one computer faulty state

without passing through the transient recovery state.

The steps to be taken in analyzing our model are:

1. Characterize transient faults,

2. Model transient recovery, and

3. Find the failure probability.

The results obtained will be estimates of system reliability and the effec-

tiveness of recovery procedures.

5.2 TRANSIENT FAULTS

5.2.1 Transient Arrival

In this analysis we make the assumption that transient faults arrive

with an average rate r that is constant over the life of the system. With the

constant rate over time, the probability of the arrival of a transient fault

in a small interval of time dt is dt. It is well-known that under these

conditions (see PARZ 60, Ch. 6, Section 3, or DAVE-58 Section 7-2) the prob-

ability of exactly k transient fault arrivals between 0 and t obeys a Poisson

probability law. That is

Pr{ k arrivals in (O,t)} = e-Tt (k

If we let k = 0, we have

Pr{ No transients in (O,t)} = eTt

which is analogous to the simplex reliability equation for permanent faults.

5-2

Permanent Transient

<| No Faul ts Fault " Mistaken for a |
' y ,Permanent Fault Fa

f One

Computer

;c 4,/

ccc,

Perannt Transient

Ln No Faults Faut Mistaken for a System
\ I I IPermanent Fault Failurel~

One
Computer

Faulty

FIGURE 5.1-1 FAULT RECOVERY STATE DIAGRAM OF A TMR CONFIGURATION

5.2.2 Transient Duration

There is little known about the nature of transient faults. A

reasonable assumption is that they have a definite duration. There is a

dilemma concerning the probability density function of the duration: We

could be of the opinion that short transients are much more likely than long

transients which would lead us to an exponential density as a mathematically

tractable approximation. We could also be of the opinion that there is

definite mean duration with an associated spread which would lead us to the

gamma, normal or Weibull densitities as an approximation. We could also say

that transient faults are caused by several sources, each source with a differ-

ent average duration. But there are more sources with a small duration than

with a large duration. In this case, the composite density function of all

the durations could be a "lumpy" exponential.

The above, along with its mathematical tractability lead us to

choose the exponential density function to represent transient duration.

Hereafter

fDT(t) = ye-Yt

where fDT is the probability density function of transient fault duration.

5.3 TRANSIENT RECOVERY MODEL

5.3.1 Components of Transient Recovery

A recovery procedure is composed of three stages as shown below.

First there is the detection time (Tu) between fault occurrence and detection

which is random (It is random because we assume milliseconds between successive

comparisons). Then there is a delay Tv before starting the recovery procedure.

The delay is the diagnostic time which is a design constant for transient

recovery. Then there is the recovery time Tw to accomplish the recovery

procedure. The quantity Tr is convenient variable which is defined as

Tr = Tv + Tw, the time between detection and recovery completion. The quantity

TA is the total time consumed between fault occurrence and recovery completion.

We assume the distribution of Tu does not vary during the mission. This three

stage recovery sequence is also applicable to permanent fault recovery, but is

presented here in the transient fault context.

5-4

I TA

II I I
T T T
S u v

Fault Fault Start End
Occurrence Detection Recovery Recovery

For the time being we assume that Tr is a constant. We hope to

relax this restriction in the future to include more sophisticated recovery

procedures.

5.3.2 Fault Detection

We now focus our attention on T . Let us make the following
U

assumptions:

1. Faults are detected by comparison only.

2. The time between comparisons Tc is a constant.

3. The probability of detecting a fault at the first comparison

time is independent of the point in time it arrives between

comparisons.

Under these assumptions, the probability density function of Tu is a

descending staircase function as shown in Figure 5.3-1. The width of each

step is Tc , the time between comparisons. The origin is the time of fault

occurrence. The quantity ATc is the probability of detecting the fault on

the first comparison. The area under the entire staircase is one.

There are now three approximations to the staircase that come to

mind:

1. Exponential: fTu(t)= 6-6t

2. Uniform: fTu(t) = - tE[o,Tc
u c

SA tE[o,T]
3. Uniform-Exponential: fTu(t) :ae-=t t>T

c

5-5

where fT (t) is the probability density function of the detection time, Tu
u

The exponential is a gross approximation. The uniform assumes perfect fault

detection. The uniform-exponential assumes an exponential density for the

detection of lurking faults and is illustrated in Figure 5.3-2. A lurking

fault is an undetected error in program and constants caused by a transient

in the memory.

Since fT is a density function, we have

4 ffT (t) d t = 1
o u

so for the uniform-exponential approximation we have

f Adt + e-t dt = 1
o T

c

which implies

-aT

AT = 1-e c

aTc = -log(l-AT),

relationships that will yield one parameter knowing the other.

5.4 ANALYSIS OF AN ENHANCED TMR CONFIGURATION

5.4.1 Definitions and Assumptions

We assume the system fails if a computer suffers either a transient

or permanent fault whenever another computer either (a) has suffered a previous

permanent fault or (b) is recovering from a previous transient fault. We

define the following configuration parameters:

1. x A* Permanent Fault Rate.

2. T A Transient Fault Rate.

3. cT A Pr {Recovery from TransientlTransient Occurs}.

4. T A Pr {Transient Fault is interpreted as a Permanent).

* A means equal by definition.

5-6

fT (t)

P
R
0
B
A
B
I
L
I I
T
YA

D
E
N

T IY I _
TT _ !

Fault
Occurrence

FIGURE 5.3-1 PROBABILITY DENSITY FUNCTION OF THE TIME TO FAULT DETECTION

The quantity cT is the transient coverage in triplex, and is the

probability of returning to the no faults state from the transient recovery state.

We can see that AT is given by

zT = 1 - cT - Pr {System Fails During Recovery from a Transient}.

The quantity aT decreases the transient coverage. Therefore, we call kT

the transient leakage. We will find leakage directly, so we need to identify

some of the mechanisms that contribute to it:

1. Transient duration lasting into the recovery procedure,

2. A second transient occurring in the recovery computer during

the last recovery attempt before being declared a permanent,

and

3. An imperfect recovery process.

This leads us to our model of the TMR configuration as shown in the

fault/recovery state diagram of Figure 5.4-1.

It is important for us to distinguish between an uncovered transient

and a leaked transient. Uncovered transients include both leaked transients

and transients that end in system failure.

5.4.2 Failure Probability

We now find the probability of reaching the system failure state

within a mission. Let F denote this probability. Then

F = Fp + FT

where Fp A Pr {System failure through the one computer faulty state}

and FT A Pr {System failure through the transient recovery state}

The two system failure events are made mutually exclusive in the

following way: Let

au X +(l-cT)T

5-8

fT(t

A

-a(T -t)

T

FIGURE 5.3-2 -UNIFORM-EXPONENTIAL APPROXIMATION TO THE FAULT

DETECTION TIME DENSITY FUNCTION

Defined in this way, qu is the rate parameter for the occurrence of perma-
-a t

nents and uncovered transients. We use e as the probability that no

permanents or uncovered transients have occurred up to time t. We then

express Fp as:
T

F = Pr {No permanent failures c(O,t), no uncovered transients

0 E(0,t), a permanent at t, and a transient or

permanent in another computer c(t,T)}

+ T Pr {No permanent failures (0O,t), no uncovered transients
0 C(O,t), a leaked transient at t, and a transient or

permanent in another computer (t,T)

3f T -3out -2X (T-t) -2T(T-t)

e edt [l-e e
0

T -3ut -2x (T-t) -2r(T-t)

+ 3J e u TT dt [1-e e]
0

-3auT -20 tT 2T

l-e 3e= H - u-t [1-e]}I a 3a -20-
u u t

where at = X +

and a =X + zT T

Let FT(TA) Pr {System fails through the transient recovery state ITA}.

The quantity TA is a random variable since the detection time Tu is

random (T. = T + T). Then since T is random, F(T) is also a random

variable. And FT = E(FT), where-E denotes the expectation, so that

F= FT (Tr t) fT(t) dt
0 U

since the T r portion of TA is assumed to be a constant at this time. We

then express FT as

5-10

Tr3 Computers Perm anent sient

Faults

Good Fault T

2 Computers er a n

2 Computers
Faulty

FIGURE 5.4-1 FAULT RECOVERY MODEL OF A TMR CONFIGURATION

T

FT = Pr{No permanent failures e(O,t), no uncovered transients

c(O,t), a non-leaky transient at t, transient or

permanent in another computer e(t,t+T)}

-T 3aut dt -e -2atT]3 f e ,dt [l-e

0

-2at]T " -3a T
= [l-e] - [1-e u]

U

- 2 a' T
= a[l-e tA

T -30uT
where a A - [l-e] and = (1-z)

u

The quantity t. is the rate of non-leaky transients. We now find FT
using the above notational simplification as

FT = a f (1-e-2 t(t+Tr) fT (t) dt
0 U

= a - a e-2t(t+Tr) Tu(t) dt

0

Now we apply the three detection density function approximations to FT.
Using the exponential approximation, FT becomes

T a - a 6e2atTr -(2at+6)tdt

0

6+2a)

2 a t+6(l-e 2tTr))

6+25 t

5-12

With the uniform approximation, FT becomes

Tc -2cTr -2ctt

FT = a[- e T e t dt
o c

-2 T c
t-2 r -2a tT

2= a[c (l-e t

And using the uniform-exponential approximation, FT becomes

F T Ae -2a T -2 tt
FT = a - a Ae e dt

0

- a2 te eT dt
C

-2 r 2T -2atT -(2at+a)Tc
= a[l- 2 (l-e c) - te e

2ot 20t+a

Note that if we set A = I/Tc and a= 0, FT becomes the same as for the case

of the uniform approximation. And if we set A = 0, Tc = 0, and a = 6; FT
becomes the same as for the case of the exponential approximation.

5.4.3 Transient Leakage

We will model transient leakage due to two causes:

1. A second transient occurring in the recovering computer

during recovery.

2. Transient duration continuing into the recovery process.

Here we consider ideal recovery procedures. A complete loading of state vector

and program/constants (if DRO memory) would approach such an ideal for

this modeling.

Let L1 be the event we receive no transient in the recovery process

and L2 be the event that the transient is still active during the recovery

process. Then the transient leakage becomes:

5-13

t Pr L 21

= 1 -Pr (L1 } + P [L 2 } - Pr ^L1L2)

We compute the leakage in this manner so that we can examine the two causes

of leakage separately.

Let

0 1 - Pr { 1 (Transient upon a transient)

2 = Pr { L2} (Excessive transient duration)

then

£I = 1 - Pr { L1IT = Tr+t} Pr {T = Tr+t} dt
0

_ -/e t(t+T)

f e fTu(t) dt
o u

For the uniform-exponential approximation to Tu

T =
SI-aT -at(T +t) CT -(a t+c)tI = 1 - e tr{ Aet r dt +J ae dt

0 T
c

Ae-T -a T tTr-(a t+)Tc
= 1 Ae -tTc) e tr t c

=- -- (1-e)
t t+a t

Setting A = and = 0, we have 1 for the uniform approximation

-otT

a = 1 e)
atTc

And setting A = 0, T = 0, and a = 6; we have the exponential approxi-

mation case

5-14

-at' r

-atT
ot+6(1-e .r)

at+6

Turning to £2'

=£2 f Pr {L2ITA = T+t} Pr {T = Tr+t} dt
0

To find Pr {L2 1T }

Pr {L2 1TA} = Pr {DT> Tu+Tv}

= ye- t dt = e

Tu +TV

where y is the duration parameter as defined in Section 3.2.2.

So £2 becomes

2 = e-T e-Yt fT (t) dt
0 U

yTv f

=e -y j cAeYt dt + J e-(a)t dt
0 0

-yTv A -YT) + -(y+a)Tc
=e {- (1-e) + e }

y y+a

for the uniform-exponential approximation. For the uniform approximation,

£2 becomes

e-yTV (yTc)

2 YTc

5-15

And for the exponential approximation, £2 becomes

-yTv

2 6'+y

Then we move to P { L1^L 2}

Pr {L1 ^L 2 } Pr {LI^L 2 ITA = t+T+T } Pr{TA = t+T +T } dt

-yTf -T

o u

Computing the above for the uniform-exponential approximation and combining

with £1 and £2 , we have for IT

tTr A (-atTc ae- (at+a)Tc ,)T T A -(at+Y)Tc) e-(t+Y+a)Tc
t = 1-e (I-e) a - e [a A (-e a + y-T t t

Setting A = - and a = 0 gives the uniform caseTC

-atT -e t c eYT v - (at+)Tc
T 1 - e [(t+)T (1-e)]

atTc (at+y)Tc

And for the exponential case

-yTv
S= 1 - e-atTr 1 e

T 6+c ot+y+6

5.4.4 Transient Coverage

Turning to transient coverage, we can see that it is the probability
of the joint occurrence of two events. Let C1 be the event we receive no
transient in any computer during recovery and C2 be the event that the tran-
sient is not active during the recovery process. Then the transient coverage
becomes

5-16

cT Pr{C 1AC 2 }

=f Pr{C1\C 2ITA = t+Tr P{T = t+Tr) dt

Sy(t+Tv) -3 at(t+T r)

S(l-e) e fT (t) dt
0 u

which for the uniform-exponential case becomes

-3atTr A -3tTc e-(3at+a)Tc -Tv A -(3-e t+)Tc
CT =d t (-e + t - e [3)

3 at 3at+a 3at +Y

-(3at+y+a)T c+ ae
3at+y+a

Setting a = 0 and A = l/Tc gives us the uniform case

3a -3T c e YTv (-(3a t+Y)Tc
c = e 3r[tT (3 t+)(l-e)]

And the exponential case becomes

-3T e-YTv

cT e +3[t 3at+y+6

The equations obtained so far are summarized in Table 5.4-I.

5.4.5 Simplifying Assumptions for Shorter Mission Times

The basic assumption used here is that XT<<l. This could apply to

either shorter mission times or certain transient burst environments. If

xT<<I, then uT<<l and XTA<<l. Another reasonable assumption to make i'.

that y,6>>. Using the exponential approximation to fT (t) our expression

for. F is

3-eau T 3-2atT -(3a -2a)T -3a T 2 t+6(1-e tr

l-e 3-e [u- t-e
u u t u t

5-17

By using the series expansion

eX- x +1 2 +

we have

1 + 6Tr
F 3P otT 2 + 6RtT(6 T

Similarly,

I= (l+6Tr)

-yTv
6e

R2 6e y+ 6

6e t
____+ - (1+6T)T ~ Y +6 6 (1+6Tr)

-yTv 3t
and l-cT _ e + - (1+6Tr)T y+6 6 r

20t
Note that tT and 1-cT differ by T (1+6Tr) This means that

2a
Pr{System FailurelTransient Occurs}~--- (1+6Tr)

5.4.6 Extension.of TMR Modeling to N Computers

5.4.6.1 Fault/Recovery State Diagram

Here we will extend the basic enhanced TMR model to 4, 5, and

finally N computers. A natural extension to the fault occurrence/recovery

state diagram is shown in Figure 5.4-2.

We begin at T=O with N working computers with the computers under-

going permanent and transient faults. On receiving a fault a transient

recovery procedure is initiated. In transient recovery, four conditions

can result in three outcomes:

5-18

TABLE 5.4-I SUMMARY OF EQUATIONS FOR THE TMR CONFIGURATION

UNIFORM-EXPONENTIAL* EXPONENTIAL* UNIFORM*

2at ~ - 2a T tr (2a)T2arT r 3
F -Z 3 T Ae-2tTr c e-2 tTr (2t Tc _ -3u T 20 +6(1-e 2 T - T e2-t3r -2a T

St(1-ea) (- -2e (1e)- 2a-c (1-e)]

£ 1 - r (1-e t C
1 (-e-)

-T - T -(t+a)TTc)+T -(]}) (-a'°trr-T- -
" YT V

--aTy "v a y

atLTT 3t at
+ a at+y3 at + y+T 3 a +a v Yr t]l [Tc yTclc (3-e' t)T)

S - A "(1-e- c- eatTre (t+)T c at+ (l-e 'xTr) 1 -+ tt[-(e

ot +a t at +6 •

c T (1-t e e (-e 6e .e e1-e (}

P P (uT [lTe -e -(3au uET2a tT)T
~~APPROXIMATIONS +6FUTDFETO

1. Permanent fault - Go to N-I working computers.

2. A fault occurs in a computer assisting in transient

recovery - Go to N-2 working computers.

3. A transient fault is leaked - Go to N-I working computers.

4. The time TA passes (successful recovery) - Return to N

working computers.

The system continues to undergo faults and with the passing of

time degrades to three working computers. In three working computers, we are

in the familiar enhanced TMR.

5.4.6.2 Definitions and Review

We define the following failure probability as a function of the

number of computers working.

FN(T) = Pr f System failure before time TIN computers are

working at time 0}

And the probability of one or more of n computers suffering a

fault in time TA is

-no TA
fn(T) 1 - e

We can express F2 as -2a tT

F2(T) =1 - e

where

t = +

5-20

Recovery Recovery
N-1

Working

Computers Permanent Permanen
Fault Four ault Two

T Working IT Working
erComputer Computersn Permanent

omputeFault ermanen FailureComputers Five Fault Three
c-' Working IT Working T

Transient
Recovery

Transient Transient
Recovery Recovery

FIGURE 5.4-2 EXTENSION OF ENHANCED TMR MODEL TO N COMPUTERS

And recall that

FT -3aut -2at(T-t)
F3 (T) =

3 e U(1 - e)dt

0

3 e -3t[l - e -2a t dt

0

fT -3au t

- 3oe F2 T-t)dt

0IT -30 t

T 3Te f2 (TA)dt

0

where a + ITT

a X + (1 -c)T,
u T

f (T) [- e-n TA

T _ (l-XT)T

The quantity fn is the probability of receiving any fault during the time TA.

5.4.6.3 Finding Failure Probability for Four Computers

From the state diagram of Figure 5.4-2, we can find F4(T) as a
function of F2 and F3 by the sum of the probability of going to system
failure through the two working computers state and the probability of going
to system failure through the three working computers state. We formulate
F4 as follows:

5-22

T

F4(T) Pr { No permanent or uncovered transients from 0 to t, a

0 permanent or leaked transient at t, system failure

from three working computers between t and T}

+f Pr { No permanents or uncovered transients from 0 to t, a

0 non-leaky transient at t, a fault in a computer assist

ing in recovery between t and t+T,, and system failure

from two working computers between t and T}

sT - 4 a t

e u 4azdt F3(T-t)

0

ST -4a t
e u 4T dtf3(T) F2(T-t)

0

-40 T -30 T e-3au0 T -20tT
2 1+3e u -4e u 12

= at 2 ' + 3-2 t [u 40 -2ot

a(4 -2 t f2 TA) a 2-4u aT -4 T -30 T

+ zf 3(T) l-e u 4 T [e t -4a T
3 (4u 4u0 -20t

For smaller otT this simplifies to

F4 (T) z 4 2 at T3

5.4.6.4 Finding the Failure Probability for Five Computers

In the same manner as in finding F4(T) as a function of F3 and F2,
we can find F5(T) as a function of F4 and F3. So F5(T) becomes

5-23

F5 (T) 5 Sa e F4(T-t)dt

T -5 t

+ f 4 (T) 5t e u F3 (T-t)dt

0

2 -50 T -4o T -30 T
_= 9 r I f2T NI ri u 15 e u -10 e u I

3 L0T 2 2kA JL LI- u I.J -

6 3

600, -4auT - T
[e (-e u)

Ou2 (4au-2t)

3 - 30 T -2a T -2atT -(50 -2oT)T

S600 e u (l-e u)_ e (l-e
3au-2at 22 (5- u-2 t)(4 u-2 t)

U

aTf3(T) -50 T -40 T
+ T (T [1+4e u -5e u

e-2atT -(50 -2at)T -4a T -a T
20 .f3(TA) (l-e U) e u (l-e u)

40 -20 50 -20 u4au t u 5a 2 t u

Tf 4 (T) a3 -50 T 5 -3 uT
+~ [oa +f(T)] [1 +2 3e 2e

4 (T-2tT -(5a -2at)T -3a T -2a T
15-f_4(Ta) e (l-e u e u (l-e u)

3 &u-20t 5au-2t 2au

which for small otT simplifies to

F5(.T) 5a 3t5o T4

5-24

5.4.6.5 Generalization to N Computers

An examination of the integral expressions for F4 and F5 shows a

recursive relationshipbetween FN(T) and FN_1 and FN_2 which may be given as

follows:

_T -Na t
FN(T) fj Na, e. u FN_1(T-t)dt

0

T -No t
+ fn-l (T) N e U FN-2(T-t)dt

0

This relationship may be expanded into an (N-l)-fold convolution

integral. An example of this is shown in Figure 5.4-3 for F5 (T).

5.4.7 Recovery Start Delay

When formulating a transient recovery procedure we are faced with

a dilemma. If we begin the recovery procedure too soon, a long transient

duration could hinder recovery; and if we delay the start of the recovery

procedure too long, we leave the system unnecessarily vulnerable to other

faults.

We seek an optimum delay associated with this tradeoff by maxi-

mizing transient coverage. Using the exponential approximation to transient

detection we have for cT

-yT-30Tr 1 e v
c = 6e r e

T 6+3a6t 3at

-3T w 3aa tTv - (3t+y)Tv

6e T tv t v
6+3a 3dt+y+6

5-25

by breaking T into T +T
r v w dcT

Differentiating and setting dT = 0
v

-3a tTv -(30t+y)Tv

dcT -3tT 3 ate v (3t+y)e] - 0
dv = -6e [6+3 t 3at+y+ 6

This yields

T (3at+y)(3at+6)
TD - ogD = Y 30t(3a t+y46)

which will be a maximum if the second derivative is negative at that point.

The second derivative is

d2cT
3 tTr 92 (3at+) 2e-yTv

dT2 6e +3at 3t+y+6

and it becomes

d2cT -3 atT- (3T e +3) < 0
dT2 3a +6v t

when Tv is as given above.

Therefore, we have found a maximum. Similarly, the uniform approx-

imation yields the following optimum delay

-(3t+y)Tc
T log [t
v Y -3atT c

l-e

5-26

F5 (T) = dt5 fe T td 4aie u - fdT3-e d d 2 ae 2at77
o 0 0

T -5a t T-t -4 T- 3 a
+ dt 5 a, e 5ut d e4o eT dt 3 eu' [1 - e-2tTA1

0 0 0O O O

+ 1 dtd-5 0 t T-t -4 u e - tTA T- -2at

dt5 e 1 - e4 d 2aet

0 o 0

+ T dt5 -5t 1 4otT T-t t3 f -

0 o

FIGURE 5.4-3 FAILURE PROBABILITY FOR FIVE COMPUTERS

5.5 MODELING OF GENERAL CONFIGURATIONS

Here we present a general model for the analysis of adaptive and

non-adaptive configurations consisting of 1 to 5 whole computers. This

model includes transient leakage as well as the components of coverage

discussed in Section 4.

5.5.1 The Recovery Process

5.5.1.1 Coverage

Coverage is defined as (BOUR 71):

c A* Prf System recoversjfault occursi

Here we break coverage into a triplet as follows: Define

u a Pr { Fault is detectedifault occurs}

v a Prf Fault is locatedlfault detected}

w a Pr{ Recoverylfault is located}

as in Section 4.2.5. Here u, v, and w are the detectability, diagnostability,

and recoverability, respectively and

c = uvw

The quantities u, v, and w are probabilities that also have times

associated with them. We define

T U Detection time

Tv A Diagnosis time

Tw 4 Recovery time

The times may be modeled as random variables or as "worst case"

values.

*A means "equal by definition"

5-28

5.5.1.2 Transient Leakage

Transient fault recovery is divided into three states as shown

below:

Detection Dela Recovery
T T T
u v w

In this case detection is the fault indication generated by output comparators

or by error detection RET's. Diagnostic time is a design delay to allow the

transient to disappear. Recovery consists of one or more of rollback, rollahead,

and memory copy depending on the number of operating computers and recovery

design.

5.5.1.3 Permanent Recovery

Permanent fault recovery begins after an unsuccessful transient

recovery. An uncovered transient, as well as a true permanent, may be declared

as a permanent fault. After a fault is declared (or detected) as a permanent,

diagnosis and recovery may proceed.

The overall picture of fault detection, diagnosis, and recovery in

the presence of transients and permanents is shown below:

Recovery

Transient
Detection I Delay I Recovery i Diagnosis I Recoveryl
Tut T Tw T T

t t t p p

Fault Fault Recovery Transient Start Recovery
Occurs Detected Start Recovery Switch Cycle

Complete. to N-1 Complete
Permanent Computers
Detected

Second Level
Diagnosis and

Recovery

5-29

The subscripts t and p represent transient and permanent, respectively.

The times and probabilities are dependent on the particular config-

uration, the recovery procedure, and the number of computers that are working.

5.5.1.4 Notation System

Coverage and its component parts are in general different for the

number of working computers in the configuration. We need to identify the

number of computers and whether we are talking about transients or permanents.

The notation is defined by the following table:

Type of
No. of Recovery
Computers Permanent Transient

1 cl, U1 ,' v' W 1' T ul T ,' Twl I U' V, Ws' , Tus T Vs Tws

2 c2 , etc. Y2 ud'

3 c3 , etc. z3 ut'

4 c4 , etc. k4 uf,

5 c5 , etc. 5 Uq,

5.5.2 Analysis of a Duplex Configuration

5.5.2.1 Definitions and Assumptions

We define the following parameters for a duplex configuration:

1. z2 6 Pr{Transient mistaken to be permanent while in Duplexi

Transient occurs}

2. v2w2 A Pr{Successful adaptation to SimplexlPermanent or

Leaky Transient occurs}

3. i 1 = Pr{Transient mistaken to be permanent while in simplexi

Transient occurs}

4. 2 + k2T

5-30

The quantity k2 is the transient leakage in duplex. Transient

recovery while in duplex is achieved by a rollback. Duplex transient leakage

is composed then if:

1. Pr{Failure of rollback}

2. Pr{Transient duration lasts into rollback}

3. Pr{Other fault occurs during rollback}

The quantity v2w2 is the product of the diagnostability v2 and

the recoverability w2. Diagnostability is the probability of correctly

locating a fault given the fault is detected as a permanent or uncovered

transient. Recoverability is the probability of a successful adaptation to

a simplex configuration given a correct location of the fault. The quantity

02 is the average rate of occurrence of permanent and leaky transients.

Diagnosis is achieved by software self test in conjunction with BITE.

5.5.2.2 Fault/Recovery State Diagram

The fault occurrence/recovery state diagram of our duplex config-

uration is shown in Figure 5.5-1. From the no faults state a transient will

send us the rollback state where a rollback is attempted. It is successful

with probability l-z2. If the rollback is not successful, then the fault is

taken to be a permanent from where diagnosis and recovery is initiated. If

the fault is permanent, then it is taken to be permanent with probability 1.

In diagnosis and recovery, a recovery to simplex is achieved with probability

v2w2 '

In simplex, it is possible to have some transient fault recovery.

Detection is accomplished by error checking RET's (e.g., BITE). After

detection, diagnosis is immediate. Recovery consists of rollback attempts.

The simplex transient leakage is then

£1 = 1 - us s

where vs =1

5-31

5.5.2.3 Failure Probability

We define FN(T) as the probability of system failure before time

t=T, given N working computers at time t=O. The probability of failure in

simplex then becomes:

T
-al

F1(T) = 1 - e

where a! _ A + ~!T

If we set = 1, then F1 (T) becomes the ordinary simplex failure

probability.

And the probability of failure in duplex becomes:

I T -2 2t

F2 (T) =f e 2 2dt (l-v 2w2)

0

f T e2t
2 0 2 v2w2 F1 (T-t)dt

0

-2a 2T
= (l-v 2w2)(l-e)22T

T -22t
+ v 2w2 202 e 2 F1 (T-t)dt

0

where 02 = + k2T as before, and

5-32

ROLLBACK SIMPLEX OCCURS ROLL

DIAGNOSIS
AND

RECOVERY

NO SYS
FAULTS FAI

FIGURE 5.5-1 FAULT OCCURRENCE/RECOVERY STATUS STATE

DIAGRAM FOR A DUPLEX CONFIGURATION

0 T -202T (T-t)
F2 (T) = e T 2 2dt [1 - v2 + w2 (l - e)1

-2a 2T 20c2 etT -(2a - al)T
= l - e 2O2-t (l - e) v2 w2

If we let A = 0 and = , then F(T) becomes

-2y2 T 22 e T T -(292-1) T
F2 (T) = 1 - e +2 (1 - e) v2w21-2(1-z 2)

This is an approximation for the case where transient faults occur much

more often than permanents. And if we let T = 0, we have for F(T)

F2 (T) = 1 - 2v2w2e
-XT + (2v2w2 - l)e-2AT

which is the case when transients are not considered.

5.5.3 Extension to N Computers

5.5.3.1 State Diagram

The extension of Figure 5.5-1 is straightforward and is shown in

Figure 3.5-2 for up to 5 computers. The state diagram presented in Figure 5.5-2

contains several states labeled "transient recovery." When there are three
or more non-faulty computers prior to the occurrence of a fault, then the
transient recovery process involves rollahead and memory copy (if utilized).
The probability of success of the recovery procedure is reflected in the
transient leakage parameter. The probability of a transient resulting in
system failure is reflected by both the leakage (zi) and recoverability (w i)
parameters, each of which is determined through simulation runs using the
simulator described in Section 6. Similar remarks apply to the duplex and
simplex cases, but include the diagnostability (v2).

5-34

1-W5
I-w

TRANSIENT ERMANENT . TRANSIENT PERMANENT DETECTION

RECOVERY RECOVERY RECOVERY RECOVERY ROLLBACK

FAULT 1-15 w5 FAULT 1-13 3 FAULT 1-1

QUINTUPLEX QUADRUPLEX TRIPLEX DUPLEX SIMPLEX FAILURE

FAULT 1-14 w FAULT 1-12 v2w 2

PERMANENT PERMANENT

TRANSIENT PERMANENT ROLLBACK IAGNOSIS

RECOVERY _\ RECOVERY/ RECOVERY

14 12

1-w4

FIGURE 5.5-2 FAULT OCCURRENCE/RECOVERY STATUS STATE DIAGRAM FOR
1-5 COMPUTER CONFIGURATIONS

With 3 or more computers, we assume diagnosis is certain (v n=1)

since two or more faultless computers can point the finger at the faulty

one; and un is considered to be one as in duplex since output comparison is

used for fault detection. Permanent coverage then becomes

c = wn n = 3, 4, 5

5.5.3.2 Failure Probability Determination

The flure U probabilities then become

-3a3T

F3(T) = (l-w3) (1-3-)

+ w3 33 e-3 3t F2 (T-t dt

0

-44 T
F4 (T) = (l-w 4) (l-e 4

+ w4 404 e 4 F3 (T-t)dt

0

-5a T

F5(T) = (1-w 5) (1-e5

+ w5 505 e 5 F4 (T-t)dt

0

where 03 = + Z3 as before

and 04 + k4T

If we assume k3 = £4 = 5' then a general recursive expression for the
failure probability can be given as

5-36

FN(T) = (-w N) (l-e NT)

+ N N e FN(T-t)dt

where we replace NaN by aN for rotational simplification.

5.5.3.3 General Solution

A general solution to FN(T) may be found by finding SN(T) = 1-FN(T).
Here we use CN for w n, N_3; C2 for v2 w2 , and C1=0 as well as using aN for
NoN. If we substitute 1-SN(T) in for FN(T) and simplify we get:

-NT fT -aNt
1 - SN(T) = (1 - cN)(1 - e) + CN T oNe (1 - SNl(T-t))dt

0

= (1 - cN)(l - e NT) + c N Ne-NT cN Ne TSN-1(T-t)dt

0 0

= (- eN) - N(- eNT) + cN(- eNT - cN Ne SN-1(T-t)dt

By rearranging terms we have:

SN(T) = + cN N / e SN-1(T-t)dt

0

Thus we have a recursive expression for the survivability of our N computer

configuration. Since this is a convolution integral, we can re-write this

as:

5-37

(U

SN(T) = e + cN N (T-t)SN-1l(t)dt

0

= e (1 + cN aN fe SN-1 (t)dt)

0

Since S1 (T) = 1 - Fl(t) = e-lT

We can find S2(T) by substitution. Thus

S2 (T) = ea2 (1 + c202fT e 2t dt)

0

= e (l + c 2 fT e 2-l dt)

0

-a2T c2a2 (a2-ol)T= e (1 + (e -l))dt
02-"1

c2 2 -al T c2a2 -2 T

S- e + (1)e

Note that both S1 (T) and S2 (T) can be expressed as a linear combina-
tion of exponential functions. It seems reasonable that SN(T) could also be
expressed as a linear combination of exponential functions. In particular,
assume

-alT -a 2T -aN T N -. T
SN(T) = eN 1 e + a N2 e + +aNN e Nj e J

j=1

By substituting this expression for SN(T) into the recursive equation
and simplifying, we obtain

5-38

SN+l(T) =eNl (+ CN+ 1 aN+1fT eN+t SN(t)dt)
0

-aN+ T T N+ t N -a.t
= (1 + CN+1 e+1 (aNj e J)dt)

0 j=l

a N+lT N T (a N+l-a.)t
= e N+ + a eN+1 3 dt)N+1 N+1 3 =i Nj

0

= e-N+1T (1 + CN+1 aN+l x: -~j- (e (aN+1-q)T -1))
j=1 aN+l -j

CN+1N+1"Nj e- j T + (1 - CN+ lN+l Nj) e-aN+1T

j=1 0 N+1 -a j=1 oN+ 1 - j

N+1 -j.T

Y- ON+ ,j
j=1

where

cN+l N+1aNj
aN+1 ,j aN+1 -jj

N
aN+1,N+1 1 -F N+l,j

j=l1

Thus by mathematical induction we have shown that the surviv-

ability of an N computer system can be expressed as a linear combination of
exponential functions, and in the process have found an iterative expression

for finding these coefficients. A FORTRAN program has been written to

evaluate these coefficients on a computer and to plot the results on an

automatic plotter.

5-39

5.5.4 Simplifying Assumptions

The formulas obtained for the failure probabilities of the various

configurations can be simplified by representing the exponentials in each of

them by a power series, and discarding higher order terms (i.e., let
S 2 3 2 3

e x ++ " and assume that 6, etc. are small in

comparison with x). This is a valid procedure as long as it is assumed that

atT< < 1. (Note: This implies that aNT< <1)

In the following discussion, define

F3_E(T) = Pr{Enhanced TMR fails before time T}

F3_A(T) = Pr{Adaptive TMR fails before time T}

E = Relative error in simplified formulas

(Relative error = actual error)
correct value

5.5.4.1 Simplex

-alT
F1 (T) = 1 - e

but e-iT 2T 2 3T3
but1 o1

1but e -T + 2 6 = . 1-0lT

hence F1 (T)a 1 T

The relative error is given by

-01 2T2/2 + 13T 3/6 - ... olT/2 OlT
aT-a2 2 1-oIT/2 < 2
y1T - 12T 2/2 + 13T3/6 _ ... 1

OlT
thus F1 (T) = alT with J < 2

5-40

5.5.4.2 Duplex

-202T 2a2v2W2 -lT -2a2T
F2 (T) = 1 - 2e 2 (e - e)

202 l-v2w2T + v2w20 2o1T2 where jel < o2T

Note that the second term can be ignored if p is not close to 1, i.e.,

with v2w2T
F2 (T) 202 (l-v2w2)T with <2(1-v2 2

5.5.4.3 Enhanced TMR

-3auT -2a tT -(3a -2a)T
F3 (T) = - e 3e [1 - e t

3-E a 3u-2at

-3u T 2 - 2 atTR3a u 2a t + 6 (1-e))
T 2 ot + 6

If we assume that a. ou = 03 and that failures caused by transient overlaps
are negligible, then we have

F3 -E(T) z 3o3t T2 with IEi< (otT)

5-41

5.5.4.4 Adaptive TMR

-3 03T 60302 (1-v2w2) - 30301 -202T -302T

F3 -A(T) = 1 - e - (20-a)(303-20 (e -e)

6030 2 v2 w2 -olT -3a 3T
(202-al)(3a3-1) (e -e)

30302 (1-v2w2)T2 + Po3a2l T3 with Ie1 < a3T

Note that F3-A(T) 30302 (l-v2w2)T2 with < 32 2v2w2T3(1-v2w
2)

5.6 MARKOV CHAIN ANALYSIS METHOD

The basic approach is to model the computer configuration as a
continuous parameter Markov chain, by assuming state transitions occur
continuously. Once this is done we can develop a vector differential

equation* representing the system and then obtain an expression for the
state probabilities at any time t. This technique was used with the aid of
computer programs to determine the state probabilities for the duplex and
adaptive TMR configurations. The results agree with those of previous
models.

5.6.1 Mathematical Model

Given a fault tolerant computer configuration, we model it by
drawing a state diagram representing the status of the system.

In Figure 5.6-1 the nodes (Sl S2 S3, S4) represent the states
and the branches represent the state transition paths. A transition occurs
at each small time increment h.

* This is a compact form for a system of differential equations.

5-42

p2 12 (t, h)

I \
\ /

52

Pll (t, h)

P313(t, h)

FIGURE 5.6-1 MARKOV CHAIN EXAMPLE

5-43

To each state Si , assign a state probability function Pi(t) defined

as follows.

Pi (t) Pr{ The system will be in state Si at time tI

Also assign to each branch a conditional probability that is a function

of t and h, defined by

Pilj(t,h) = Prf System in state Si at time t+hlit was in state Sj

at time t}

We make the assumption that pi j(t,h) is independent of how we arrived in

state S.j, and thus model the system as a discrete parameter Markov chain.

5.6.1.1 Development of the Differential Equation

We want to determine P (t), the probability that the system will be

in state S. at time t. Because of the Markov assumption,
1

Pi(t Pij(t,h)Pj (t) (1)

Given that a state Si is occupied at time t, state Sj must be occupied at time

t+h. Hence,

Z p (t,h) = 1 For i = 1, 2, 3, ... N

By solving for pili(t,h), it follows that

pili(t,h) = 1 - jpi(t,h)

j~i

By substituting this equation into Equation 1 we obtain

Pi(t+h) = pilj(t,h)Pj(t) + [I - Pj li(t,h)]Pi(t)

j i j i

5-44

An equivalent expression obtained by subtracting Pi(t) from both sides is

Pi(t+h) - P (t) = i Pilj(th)Pj(t) - Pi(t) Z Pjli(t,h)

j i jii

By defining

pilj(t,h) for ifj

ij(t,h) = i
- pjli(t,h) for i=j

We can write the above equation as

Pi(t+h) - P.(t) = . .ij(t,h)Pj(t)
1 13

or in vector notation, we have

P(t+h) - P(t) = s (t,h)P(t) (2)

where Pl(t)
' l(t)

P2(t)

P(t) 0
0

0

P N(t)

5-45

and

1 1(t,h) D1 2 (t,h) 0 o 0 N(t,h)

D(t,h) = 2 1 (t,h) ' 2 2(t,h) 0o 0 0 N(t,h)

0

0

0

L Nl(t,h) DN2 (t,h) o 0 0 NN(t,h)

Equation 2 represents an iterative relationship, that may be used

to obtain the various state probabilities for any time t. However, we can

obtain a result that is easier to evaluate if we make some further simplifi-

cations. Assume that state transitions occur continuously, so the system can

be modeled as a continuous parameter Markov chain. The above result is then

extended for a continuous model as follows.

By dividing both sides of Equation 2 by h and taking the limit as

h approaches zero, we obtain

lim 1(P(t+h) - P(t)) = lim 1 D (t,h) (3)
h-o h-o h

Now, let

B(t) A lim 1 D(t,h)
h-o

Then since

d 1
d P(t) a lim - (P(t+h) - P(t))

h-+

We can rewrite Equation 3 as

dP(t) = (t)P(t)

5-46

If we make the further assumption that B(t) is independent of time, we obtain

d P(t) = B P(t) (4)
dt

which actually represents the system of N linear homogeneous differential

equations

dP (t)dt Bij P(t) for i = 1, 2, ..., N
dt i

5.6.1.2 Solution Procedure

To solve Equation 4, we define an operator e--t as follows

e t 1 2 2 1 3t + ... (5)

Then d at d= d 1 3 d 2 1 3 d 3
dt =- I + a t + -t + t +"".

a 6(I +B t + t2 + ...

= B e- t

It then becomes apparent that the solution to Equation 4 is

P(t) = (e- t)P(o) (6)

Since

d P(t) = (e-Bt)P(o) = 6 P(t)

*Here I is the identity matrix, and m is defined by the recursive relationship
m m-l 1
B = _B and B B.

5-47

and

P(o) = (e-Bo)P(o) = I P(o) = P(o)

et can either be evaluated by means of the above series, or in closed form

by a spectral expansion.

5.6.1.3 Closed Form Solution

The approach here is to expand _ on a set of matriciesf { Q , 2...' "" N
called projectors. Projectors have the following properties (see DENN 67 Ch 2).

2. i = Q Q = Q

2. Qi * Q. = 0 for ijt

3. _ + Q2 + ' +q

4. B = ~
1Q1 + 2Q2 + ... +ONRN where{ a } is the set of

eigenvalues of B.

Using these properties, it is easy to show that

= am + am2 + ... + m

and thus

e- I + Bt +l2t2 +
2 2

(Q1 + ... +N) + (a 1 .+ ... + aNqN)t + ' +

2)t2 +

(l + l t + t + "1) ql + ... + +tNt + t2 +...)

cl t +Nt

=e Q + . + e Q-N

A matrix can be expanded on projectors having the above properties, if and

only if it has a set of N linearly independent eigenvectors. This will always

be the case if the matrix has N distinct eigenvalues.

5-48

5-49

If it is assumed that the configuration can only get worse (it can

only go from N computers to N-1 computers, and not vice versa), then the state

diagram will have no loops in it. In this case, the transition matrix B can

always be written in lower triangular form (all elements above the diagonal are

0) for a proper ordering of states. Since the eigenvalues of a triangular matrix

are just its diagonal elements, the projectors{ q , ...RV , N} can be easily

calculated as follows:

1. i= Bii

2. qi =~ where 9i (x) _ 7 (x-ck)

k=l
kfi

P(t) then turns out to be

n 04 t
P(t) : e QtiP(o)

i=1

5.6.1.4 Power Series Evaluation of P(t)

P(t) can also 'be evaluated directly using the power series expansion

for P(t). This approach is useful for determining algebraic approximations for

the state probabilities. It is also a much more general procedure, and can

be used for a system whose transition matrix is not easily expanded as a linear

combination of projector matricies.

From Equations 5 and 6 we have

P(t) = (I + 3t + B 2 2 1 3 +

SP(o) + (a P(o))t + (1 2p(o))t2 + (1 3p(o))t3

=A + At + A2t + At 3 +...

5-49

where the A., are column vectors defined by the iterative relationship

A = P(o)

A- A

5.6.2 Application to the Duplex Configuration

To determine the state probabilities for the duplex configuration,

we make several assumptions.

1. Permanent and transient failures occur independently with

mean rates x and T respectively.

2. The failure occurrences have an exponential density function.

3. The system is continuous - i.e., the time spent in the transient

recovery states is negligible, and a multiple fault cannot occur.

5.6.2.1 Determination of the Transition Matrix

In Figure 5.6-2, the important states are duplex, simplex and

system failure. The time spent in the other 2 states (rollback and diagnosis)

is negligible (zero if it is assumed that the system is continuous), hence

we combine them with the duplex state to obtain the following state diagram.

In this example, we assume w2 = 1 and z1 = 1.

2v2ah Simple

Duplex5
ath

O Failure

5-50

X = Permanent fault rate

r = Transient fault rate

0t = T + x = Total fault rate

System

p=V 2W2 = Pr {System switches successfully fromduplex to simplex}

C2 = Pr {Transient error corrected by rollback} (= -2)

ath = Pr (Fault occurs in time increment h}

t/at = Pr {Fault is transient}

02 = x + (1-C2)T = Gt (l-C 2 (-))

FIGURE 5.6-2 STATE DIAGRAM FOR THE DUPLEX CONFIGURATION

5-51

Where the transition duplex - simplex actually corresponds to the sequence

of transitions.

Duplex - Rollback + Diagnosis -* Simplex

and the transition

Duplex System Failure

corresponds to the sequence of transitions

Duplex -+ Rollback - Diagnosis System Failure

The new conditional transition probabilities are the product of the conditional

probabilities along the path, hence since

Pr { Duplex-* Rollback} = 2ath

Pr{ Rollback-*Diagnosis} = 1 - C (--)

and Pr{ Diagnosis - System Failure} =1-p

We have

Pr{ Duplex -+ System Failure} = (2ath)(l - C2(,-))(1-v2)
2

= 2(1-v 2)a 2 h

Similarly we obtain Pr{ Duplex Simplex} = 2v2 a2 h

Let S1 = Duplex

S2 = Simplex

S3 = System Failure

Then from the above figure we obtain

P2 11(t,h) = 2v2 a2h > 2 1 (t,h) = 2v 2 a2 h

p3 11 (t,h) = 2(1-v 2)o 2h 43 1(t,h) = 2(1-v 2) 2h

P3 12(t,h) = oth
e32 (t,h) = ath

Also 1 1(t,h) = -(P 2 11 (t,h) + P3 11 (t,h)) = -2o2 h

22(t,h) = - ath

and 33 (t,h) = 0

5-52

-2a2h 0 0

Thus the transition matrix is o (t,h) = 2v2a2h -th 0

2(1-v 2)a2h ath 0

-2a2 0 0

_ = lim 1 Q (t,h) = 2 -a 0

5.6.2.2 Closed Form Solution for Duplex Configuration

P1 (t)
P(t) = (e-t)p(o) where P(t) = P2(t)

L P3(t)

and Pl(t) = PF{ System is in duplex state at time t}

P2(t) = Pr{ System is in simplex state
at time tI

P3(t) = Pr{ System has failed by time t}

Earlier it was stated that

N a.t

P(t) = e i qiP(o)
i=l

where a ~ ii

4i - (a i)"

N

and 9'(x) = 17 (x-ai)
1 j=1

j i

5-53

-22 0 0

For the special case where B = 2v2 2 -at 0

2(1-v 2)a 2 at 0

The eigenvalues are

1= -202

a2 = -at

3
= 0

and the 'is are

1 (x) = x(x+at)

T2(x) = x(x+2a2)

P3(x) = (x+ot)(x+2a2)

so 1(cl) = i(-2a2) = 202(202-at)

2(a2= P2(-at)= -at(2a2-at)

"3(3) = ' 3 (o) = 2 t2

Also

-202 0 0 ot-2a 0 0 -202 (at-2a) 0

l () = 2v2G2 -at 0 x 2v2a2 0 0 = -4v2a 2 0 0

2(1-v 2)a2 at 0 2(1-)a)o2 t t 2at2-4(1-v 2) 2
2 0 0

0 0 0

2(_)= -2v2a2 -at(2a2-at) 0

2 v2a2at ot(2a2-at) 0

5-54

and

0 0 0

93 () 0 0 0

2202t 2a2at 202at

Thus the projectors are

1 0 0

1i(_) -2v202S-2v 2 2 0 0
1 (al) 202-a t

2v2a2
-(1- 2 0 0

0 0 0

2v2a2
A2 2a- t 1 0

-2v202
-1 0

and

0 0 0

Q3 = 0 0 0

1 1

A closed form solution is thus

P(t) = e 2 q P(o) + e -a P(o) + t 3 P(o)

5-55

where P(o) = O since the probability of being in the duplex state at

t=o is one.

Hence,

-2a2t -2v2 2 -1 tt 2v2a 2 1
rkP(t = e -+ e 2G a u

2a2-at 2a2-a2t

2v2a2 -2v2a 2-(1-) 22_t
2a2-at 2 a2-at

Thus Pl(t) = Pr { System is in duplex state at time t}

-2a2t
= e

P2(t) = Pr{ System is in simplex state at
time t}

2v2a2 [ett -2a2t
e e]

202-a t

P3 (t) = Prf System has failed by time t}

2v2o2 -2a2t 2v2 2 -ott
= 1 -(1-) e - e2c2-a.t 2a 2- at

Note that P3 (t) agrees with the other results.

5.6.2.3 Approximation for Small Mission Times

A quick approximation for small mission times, suitable for hand

computation, can be obtained by evaluating the first few terms of the power

series expansion.

5-56

The transition matrix is

-2G2 0 0

= 2v2"2 -Ct 0

2(0-v 2)a2 t 0

Earlier it was shown that P(o)= A + At + A2 t 2 +

where Ai = T-B Ai and A = P(o)

Using this for the duplex case we have

A = P(o) = 0
0

-2a2

2(l-v
2)a2

2a2
2

A 27 .A1 = -2v2a2(a2+at)

22
2(1-v 2)o2 +v2 2at

1 -202 2022

Thus P(t): 0 + t 2v2c2 + t2 -2v2a2 (a2+at)

0 2(1-v 2)a2 -2(1-v 2) 2
2+v2a2at

5-57

So we have

Pl(t) = Pr{ System in duplex state} = 1-2odt + 2ad 2t 2

P2(t) = Pr{ System in simplex state} 2v2a2t - 2v2a2(G2+ut)t 2

P3(t) = Prf System has failed} 2(1-v 2) 2 t(1-a 2 t)+ (v2c 2ct)t 2

The approximation for P3(t) agrees with the result obtained in Section 5.5.4.2.

5.6.3 Application to Adaptive TMR Configuration

The same assumptions are made in this analysis as were made earlier

for the analysis of the duplex configuration.

5.6.3.1 Determination of the Transition Matrix

The state diagram for the adaptive TMR configuration is

3ath

Transient t a Dupl ex uTMRex
: : Recovery Configuration

CT(O)

where CT= Prf Transient error corrected by rollahead} (= 1-k3)

The time spent in the transient recovery state is negligible, so we

combine it with the TMR state to obtain

s. l Duplex Configuration I

TMR Duplex Simplex 3

s2 "I

System

Failure S4

5-58

The transition matrix is thus

-3a 3 0 0 0

303 -2'2 0 01

0 12v2 2 a- 022 t

0 2(1-v 2)a 2 at 0

Note that the outlined portion surrounds the transition matrix for the duplex

configuration.

5.6.3.2 Approximations for Small Mission Times

An approximation for the state probabilities can be obtained by

evaluating the first 4 terms of the power series expansion. Thus

1

0
A=0 0

0

-3a3

A = 3G
-1 0

0

9a3
2

1 -(9a 3
2 + 6 30 2)

6v
20 3 2

6(1-v
2)a3 2

5-59

-27033

3 2
1 27a3 + 202(90 3 +603 2)

6 v2a2 (93 2+6a3 2) -6v2c3a2at

-2(1-v 2)a2(9G32 +6a 3 2)+6v2 302 t

Thus since P(t) ; A + tA + t2A + t3A
-- -1 2 -3

we have

P4(t) = Prf System has failed by time t}

' (6 (vl 2 3
(6(-v2)a3a2)t2 + (2-(l-v2)a2 (9a3 +6a3G2) +

6v2a3 2at)t3

(1-v2)a3a2t2 [3-(3a3+2a2)t] + v2a3+2at
t3

;3(1-v 2)a3o2t2 + v2o3a2att3 assuming (3a3+2a2)t<<3

5.6.4 Programs

Several programs have been written in APL to aid in calculating state

probabilities for various mission times. These programs have been tested for both

the duplex and adaptive TMR, and the results agree with those obtained earlier

for the Interim Report.

5.6.4.1 Projector Method

VPROJECTOR U] V
V PROJECTOR A;I;N;P;J;K;Q

[1] I+(pA)pl,(N+ltpA)pO
[2] EVS- 1 i PA
[3] TRANS(0,pA)p0O
[4] P+((N,pA)pA)-EVSo.xI
[5] J.1
[b] LP1 :K-2
[7] R(~I[J;I])/tN
[8] Q-PER[I] ;;]
[9] LP2:Q-Q,.xPLR[K];;]
110] +(N>K-Kil)/LP2
[111 TRANS-TRANS,[1] Q+x/(~I[J;])/EVS[J]-EVS
112] +(NaJ+I#1)/LP1

V

5-60

This program determines the eigenvalues and projectors of a tri-

angular matrix - A. The resulting eigenvalues are returned in the vector - EVS,

and the projectors are returned in a multidimensional array - TRANS.

VE VAL1LU]V
V HRIC EVAL1 T

[1] R-(*To.xEVS)*.xTRANSt.xIC
V

This program uses the results returned by PROJECTOR to determine the

state probabilities for various mission times. The initial condition - IC,

and a vector of mission times - T are the arguments of EVALI. An array of

state probabilities is returned as a result.

5.6.4.2 Power Series Method

VTRAN U] V
V R-IC THAi A;M

[1] MAt.xIC
[2] R-M, 0.5] 1IC
[3] I-2
[4] LP:M-Ai.xM+I
[5] R4-1,[1] R
[6] *(NTtl I #I1) /LP

V

This program returns the set of column vectors A , A , A

(see Section 5.6.1.4) in the form of a matrix. The number of terms (column

vectors) is determined by a global variable - NT. The initial conditions - IC,

and the transition matrix - A are the left and right arguments of TRAN

respectively.

VEVAL U] V
V R-A EVAL T

[1] R_(((p 1),)pT) "A
V

Given a matrix of column vectors [A, A ... , AN] and a vector
2 N

of times - T, this program returns the sum A + Ait + A2t + ANt for each t.

It is used in conjunction with TRAN to obtain P(t).

VERR[U] V
V RHT ERR A

E1] R-A E VAL T
[2] R-(R-(((ppA)fl)+A) EVAL T)+R

V

5-61

This program gives an upper bound on the error of the power series

expansion. The maximum time - T is the left argument, and the matrix of column

vectors - A is the right argument.

5.6.5 Conclusions

The above procedure for determining the failure probabilities of a

fault tolerant computer has several advantages over the earlier approach.

1. All state probabilities are obtained as a function of time.

This allows a more detailed study of a given computer configuration.

2. The model is general for any number of computers only the tran-

sition matrix is needed to obtain numerical results on a

computer.

3. It is much easier to obtain approximations for the state

probabilities as a function of time.

5-62

6.0 SIMULATION

6.1 OBJECTIVES OF SIMULATION

The function of the simulator portion of CAST has been described

briefly in the Summary and is treated in more detail in Section 8.1. Trans-

lating this function into simulation objectives yields the following three

items. The simulator should produce:

1. The fault-tolerance effectiveness of each of a wide

variety of reconfigurable computer system configurations;

2. Global parameters for use in analytic modeling;

3. The behavior of a configuration in various fault

environments.

The requirements imposed on the simulator design by these three

objectives are examined in the following paragraphs.

6.1.1 Configuration Fault-Tolerance

Measures of fault-tolerance have been defined in Section 4. The

simulator should be able to produce these for a wide variety of configurations.

This requirement can be satisfied in a reasonable way by structuring the simu-

lator such that the various fault-detection and recovery algorithms are imple-

mented as subroutines. Thus a configuration can be described by specifying

the applicable set of subroutines, plus the necessary parameters. This simu-

lator structure provides versatility and modularity, and minimizes the impact

of addition of new subroutines.

6.1.2 Determination of Global Parameters Used in Analytical Modeling

Global parameters are those required when using the analytic model

for analysis of a configuration. An example will help in understanding what

we mean. The reader may recall that in Section 5.4.1, the transient coverage

in triplex, cT has been defined as the conditional probability that a triplex

system recovers, given that a transient has occurred.

If a configuration is analyzed by mathematical modeling, cT is one

of the input parameters of the model. However, it is difficult for the designer

to evaluate cT , since it may depend on:

6-1

- the location of the transient fault

- their occurrence rate T

- the time between occurrence and detection of a fault

- the recovery algorithm used

By introducing these factors into the simulation, and gathering statistics

describing the computer system reaction to transient faults, cT can be esti-
mated by computing the ratio of the number of successful recoveries from

transient faults to the total number of transients.

Thus, for the configurations where the mathematical modeling is

applicable, one simulation run gives an estimate of these parameters of the
modeling. Then using the model, the reliability, R(t), of the configuration
can be easily determined for any given time t.

6.1.3 Fault Environment

The fault environment provided in the simulator should be suffi-
ciently versatile to provide all expected possibilities to test the recovery
algorithm utilized in the configuration under simulation. Thus low or high
failure rates, existence and duration of transient bursts, long transients,
mathematical fault-distribution functions, etc. must be provided. Implemen-
tation of this fault environment should be accomplished so as to provide
maximum flexibility of environment choice by the user.

6.2 GENERAL ORGANIZATION OF THE SIMULATION

6.2.1 General Approach

Certain aspects of the general approach to the design of the simu-
lator are implicit in objectives 1 and 3, namely the need for versatility
and flexibility. There is a third, as-yet-unstated requirement, and that is
for an efficient implementation that results in a reasonable computer-cost
per run.

The versatility and flexibility requirements can be satisfied by
designing a modular simulator that is easily modified (flexibility), and that
models many configuration and fault-environment possiblities (versatility).
Since we are concerned with behavior of the computer system following occurrence
of a fault, we can obtain an efficient implementation by designing a "fault-

6-2

driven" simulator, rather than one that simulates the continuous operation

of the system.

Having chosen the general structure of the simulator, the next

choice is that of implementation language. There are three contending

possibilities. These are the computer system simulation languages such as

ASPOL, ECSS, CSS-II, etc.; the discrete-event languages such as SIMSCRIPT,

GPSS, SIMULA, etc.; and finally the general purpose languages such as FORTRAN.
The computer system simulation languages offer ease of inclusion of peripheral
devices such as tapes and discs, and the gathering of statistics as to their
use. However this is not an issue for the RCS study. Similarly, the discrete-
event simulation languages offer easy simulation of user queues and related
items but these are not a factor in the type of simulation considered here.
Thus we are left with the general purpose languages. Since FORTRAN is available
both to Ultrasystems and NASA Langley, and provides the possibility of good
program efficiency, this is the language that was chosen.

6.2.2 Organization of the Simulator

The approach taken to the formulation of the simulator is somewhat
similar to that described in KRUU 63. Utilizing an extension of this approach,
the computer system is seen as a finite state automaton. A state is defined
by:

1. The number of good computers.

2. The action performed by the system at a given time.

A simplified state-diagram of the computer system is presented in Figure 6.2-1.
This diagram shows all the states and the transitions between states, but does
not show all state entry and exit conditions as does Figure 6.4-1. Basically
the computer system states can be divided into five categories. These are:

NORMAL OPERATION

Multiplex (N 3)

Duplex (N=2)

Simplex (N=l)

TRANSIENT-FAULT RECOVERY

Rollahead

Memory Copy

6-3

Rollback

System Restart

PERMANENT-FAULT RECOVERY

Introduction of a Spare

DIAGNOSIS

Diagnosis

FAILURE

System Failure

A more detailed state diagram and the related details are provided

in Section 6.4.

The simulator program consists of a collection of FORTRAN IV computer

programs (to be run in a CDC 6600 CYBERNET computer environment) organized and

designed to satisfy the objectives of simulation (Section 6.1). The main routine

in charge of directing the processing flow of the simulation is designated the

Driver. A collection of subroutines are accessible to the Driver via FORTRAN

CALL statements. Each of the computer system states (Section 6.4) are repre-

sented by a subroutine. Other supportive subroutines perform statistics gathering

and probability generating functions. The gross organization of the simulation

is presented in Figure 6.2-2.

The simulator program is structured to simulate the detection of

faults within a computer system and the computer system's successful/unsuccessful

recovery actions taken in response to the detected faults. Each simulated mis-

sion is assigned a mission time. A simulation run consists of the repetitive

continued simulation of a designated number of missions (each with the same

mission time).

The initialization box of Figure 6.2-2 encompasses mainly of reading

the run parameters and generating the fault table (see Section 6.5).

The simulation box is detailed in Figure 6.2-3. As stated earlier

the simulation is fault driven. Nothing happens in the simulator until a fault

occurs. This is very important in terms of simulator efficiency. The computer

time spent in one run will be roughly proportional to the number of faults and

not to the simulated mission time.

6-4

MULTIPLEX ROLLAHEAD SYSTEM

(N3) RESTART
OPERATION

INTRODUCTION DUPLEX MEMORY SYSTEM
OF A OPERATION COPY FAILURESPARE

ROLLBACK DIAGNOSIS SIMPLEX ROLLBACK
IN OPERATION IN

DUPLEX SIMPLEX

FIGURE 6.2-1 SIMULATOR STATE DIAGRAM

C
START

Nvo -More Runs

End

Initializations

Simulate given
number N

of missions

4

Report

FIGURE 6.2-2 GROSS ORGANIZATION OF THE SIMULATION

6-6

From box 2 of figure 6.2-2

aul
No efore en es

of the Nth
issio

To box 4 of 12
Figure6.2-2 Determine

mission in
which the

fault occurs

Simulate RCS
handling of
the fault

14

Gather
Statistics

Nex
Yes fault in

the same
missio

FIGURE 6.2-3 PRINCIPLES OF A FAULT DRIVEN SIMULATION

(BOX 3 OF FIGURE 6.2-2)

6-7

Figure 6.2-4 shows how the simulator makes the transition between

the various states. For example, when simulating a triplex configuration,
simulation begins in State I. The fault table is scanned, a fault is found

and its detection time is determined. The next state is determined (variable
NEXT) and the transition occurs. The simulation continues in a similar

fashion for each state until the mission ends.

6.3 INPUTS/OUTPUTS

6.3.1 Inputs

The parameters of a simulation run are listed below. An asterisk
indicates that an explanation of this parameter is given in a following
subsection.

Number of simulated missions

Mission dependent parameter

Mission time

Machine-dependent parameters

Permanent failure rates

BITE Detection probability of a CPU fault*
BITE Detection probability of a memory fault*

Self-test program efficiency*

Self-test program duration

Configuration-dependent parameters

Number of computers

Number of spares

Dedicated/Non dedicated EEMs (External Electronics Modules)*
Probability that an EEM fault hits the bus

Number of non-dedicated EEMs

Dedicated/Non-dedicated buses (see Section 6.5.7)

Number of non-dedicated buses

Number of external devices

Coverage and relative failure rate of each device and of
the buses

Applicable recovery algorithms*

Recovery algorithm characteristics

6-8

From box 2 of figure 6.2-3

Simulate State I

(Normal N-Plex
Operation)

NEXT=?

Simulate State II

3 Simulate State III -

6 To box I of figure 6.2-3

12- Simulate St a t e X II

FIGURE 6.2-4 RCS HANDLING OF FAULTS
(BOXES 3, 4, 5 OF FIGURE 6.2-3)

6-9

Duration

Unacceptable recurrence interval*

Maximum number of rollbacks

Program Integrity*

Memory-copy Efficacy

Scheduling parameters

Iteration period

Time between comparisons

Major and minor cycle durations

Asynchronous/synchronous mechanism

Environment dependent parameters

Transient failure rates

Transient failure duration

This list of inputs is presented in a slightly different and more

detailed way in Figure 6.3-1. Filled in spaces contain either the impl-icit

value of a parameter or its name. For example, among the transient fault

recovery parameters, we see that the duration of a rollback is the time between

comparisons and that its efficiency for a CPU transient fault is always 100%.

6.3.1.1 Detection Probabilities

These are the probabilities that a computer detects its own faults

(except through diagnosis). This is not significant for N-M-R configurations

(N 3) since all faults are detected and located through voting or comparison.

However, these probabilities become critical in duplex and simplex. In duplex,

faults are detected through comparisons. However, if no other RETs are

available, it is not possible to isolate the faulty computer. In simplex,

these RETs are necessary, since they provide the only way to detect transient

faults.

For simplex operation the detection probability of CPU faults

is low. Faults in the CPU usually cause only a wrong output which will not

be detected by BITE. However some will be detected. Those are the ones

which cause a forbidden address to be computed or those which modify the

computing sequence in such a manner that a go/no-go counter detects them.

Intuitively, we can set this detection probability in the range from 5 to 20%.

6-10

1) PHYSICAL PARAMETERS 3) PARAMETERS AFFECTING FAULT DETECTION AND ISOLATION IN THE COMPUTERS 5) TRANSIENT FAULT RECOVERY PARAMETERS

a) Design Decisions a) Detection Efficiency
Efficiency for Efficiency for Maximum Number
CPU Fault Memory Fault Duration of Trials Time Limit In Use

Number of Computers Number of Computers 3 or more 2 1

Dedicated/Non o edicated EEM Comparisons 100% 100% Rollahead 100 0) Program Delay(
1
5) + Rollahead Duration NA Recurrence Interval Yes(10)

Number of EEMs
Rollback Survivability Time Between Comparisons Max Number NA Yes()

Number of EEMs () CPU BITE of Rollbacks

Dedicated/Non Dedicated Buses Memory Copy NA
4

Memory Copy Memory Copy Duration NA(
14

) Recurrence Interval

Memory BITE Efficacy
Number of Buses (1) iO0) (14)

Number of External Devices Per Bus System Restart 100%
(
10) 100(0) System Restart Duration NA(14) NAYes(O)

Number of Spare Computers b) Isolation ciency
) Duration

Number of Computers 3 or more 2 6) PERMANENT FAULT RECOVERY PARAMETERS

b) Failure Characteristics Compariso
ns(7)

100%(10) 0 0) Always done by switching off or ignoring the faulty computer,
once the permanent has been recognized. If a spare is available,

h(3) (3) (3) (
3
) CPU BITE it is switched in.

Memory BITE

CPU () NA
(4) iagnosis(8) Number of Computers 3 or more 2 1

Memory (II) NA'
4
) (STP) Efficiency 100%(1O) STP Efficiency 0%(lO)

EEM(12) (III) NA(
4) Duration 0

(lO)
Diagnosis + NA

Bus and External 4) PARAMETERS AFFECTING FAULT DETECTION AND ISOLATION IN THE EXTERNAL HARDWARE . ondSpare Switch-off Duration

Devices (IV) NA
4) tioning

a) EEM (11 Time
Impact of EEM Failure on Bus

Number of Faults in the Bus Number of EEMs 3 or more 2 1

IV Detection Efficiency 100%(lO) 100%(lO) %(0)F

Number of Faults in Each Isolation Efficiency 100% EEMCoverag10 16 N-A.14) FOOTNOTES
External Device

IV b) Bus and External Devices (1) Implicit parameter when each EEM/bus is dedicated to (8) This parameter is valid only for permanent faults. Diagnosis is
Bus and External Devices one computer. no hemp with transient faults.

- Bus (2) The bus by itself is considered as an external device. (9) Isolation efficiency Is 100%, once the fault has been detected in simplex.

2) SOFTWARE CHARACTERISTICS Number of Buses 3 or more 2 1 (3) X: permanent fault rate; p.: dormant fault rate. (10) impliit parameters.

: transient fault rate; /y: mean transient duration. (11) These parameters are not applicable with dedicated EEM: in this case, faults

Detection Efficiency 00l%(O) 100%lO) 0%) (4) Non applicable when there is no spare. in th EEM are considered as equivalent to CPU faults.

SynchronousAsynchronous Isolation Efficiency %
)

Bus Coverage (5) In this example, t is assumed that the four external (12) These parameters are 0 with a software TMR since there s no EEM.
Isolatio Ef c % Cdevices have the same fault rate. (13) Rolla ead is used for 3 or more computers.

Iteration Period (6) Non applicable when synchronous scheduling. Rollbhck is used for 2 or 1 computers.

- For Each External Device (7) These parameters are implicit. However, the 100% (14) Non a plicable.
MinorNumber of Redundant Devices 3 or more 2 1 efficiency is reached onlyafter the whole memory (15) Rollaead is preceded by an imposed delay to allow the transient to dissipate.

has been exercised, i.e. after a full major cycle.
Major Cycle Duration %[) 0%0) Thus BITE feature may speed up detection. (16) Irrel vant when EEM are dedicated.
(In terms of iterations) Detection Efficiency IlW1

Oo%(lO) 1en at

Time Between Comparisons Isolation Efficiency 100%(10
)

Sensor Coverage N.A.
14)

Maximum Down Time

Relative Size of Minor
Cycle Program

Interrupt Rate

FIGURE 6.3-1 LIST OF INPUT PARAMETERS

FOLDOUT FRAME FOLDOU~

6-11

The main technique to detect a memory fault is parity encoding. When

it exists, the probability of detecting a memory fault is 80%. When it does

not exist, this probability is quite smaller.

6.3.1.2 Self-Test Program Efficiency

Self-test programs (diagnosis) are run in a duplex system where a

fault has been detected but not isolated. Note that if the fault is transient,

the self-test does not diagnose it, since it likely will have dissipated when

the test is run.

6.3.1.3 Dedicated/Non-Dedicated EEMs

If the configuration includes some additional hardware for the External

Electronics Module, the consequence of faults in this hardware has to be assessed.

We partitioned the configurations in two classes. In the first class (dedicated

EEMs), we assume that a fault in the EEM is equivalent to a fault in the compu-

ter and some times on the corresponding bus. In the second one (non-dedicated

EEMs), we assume that EEMs are independent from the computers. The system can

work as long as one computer and one EEM are good. Note that the dedicated case

includes software TMR.

6.3.1.4 Existing Recovery Algorithms

In the present simulator, the recovery procedure for a NMR system is

the state vector transfer. Memory copy is optional.

6.3.1.5 Unacceptable Recurrence Intervals

Once-a recovery procedure has failed for a certain fault, it is use-

less to attempt to recover through the same procedure. Some other one has to

be chosen. If after completion of a recovery procedure, a fault recurs in the

same computer after a time less than the unacceptable recurrence interval, the

system decides that the recovery procedure was unsuccessful and attempts some-

thing else. Usually, the recurrence intervals will be chosen equal to the

duration of one major cycle (Section 5). The rationale is that the memory is

thoroughly exercised in one major cycle.

6.3.1.6 Program Integrity

This probability is listed with the other recovery algorithm charac-

teristics because a rollback and a rollahead (state vector transfer) cannot

6-12

succeed when there is a program memory damage. Program integrity is strongly

linked to the type of memory: an NDRO memory is much better in this respect

than a DRO memory. The fact that there is no need to restore the information

makes it very unlikely that a transient fault damages instructions or con-

stants. In addition, in most NDRO applications, the write voltage for the

program memory is disabled except when altering the program under AGE control.

6.3.1.7 Memory Copy Efficacy

This is the probability that a memory copy corrects a transient

fault. They only reason why it should not succeed is that the transient

had hit the little (micro) program initiating the memory copy. This is very

unlikely since this program should reside in a read only memory or microstore.

6.3.2 Output

Output consists of the following results.

1. Number of system failures.

2. Causes of system failures:

- Too long unavailability. Failures caused by repeated

recovery procedures lasting too long.

- Non isolated faults. In duplex, even though a fault

may be detected, it is possible that the diagnosis

routines are unable to isolate the faulty computer.

- Simplex failures in simplex mode, permanent faults,

undetected or unrecovered transients cause system

failure.

- EEM failures.

- I/O and bus failures.

3. Number of switches to - quadruplex

- triplex

- duplex

- simplex

4. Transient coverages in multiplex, duplex, simplex.

5. Diagnostability in duplex.

6-13

6. Proportion of catastrophic faults. These are the faults

which cause a system failure even though there are 3 or more

computers in the system when they occur. (As long as the

Poisson hypothesis holds for fault rate (Section 4.3.1), this

number should be 0).

7. Number of missed iterations.

Causes of system failures are recorded because the dominant system

failure mode points to the area in the design where improvement would be

significant.

Similarly the number of switches to duplex and simplex are

recorded since these are less effective and less reliable modes. Further-

more, these results are useful when studying a non (fully) adaptive system.

For example, if a TMR system cannot degrade to a simplex mode, all switches

to simplex should be considered as failures. Thus, non adaptive configura-

tions are just considered as a special case of adpative configurations. They

don't need any special parameters. Coverages and diagnostability are determined

since these are parameters to be used in analytical modeling.

6.4 STATE DIAGRAM

Figure 6.4-1 presents the detailed state diagram of an adaptive

NMR configuration. The algorithms involved in States I, II, III, and VII do

not vary for three or more active computers. Thus we avoid a proliferation

of redundant states by maintaining a count in the simulation of the currently

active computers.

6.4.1 Normal Operation (3 or more Units)

In the normal operation state with three or more computer units, the

outputs of the computers are periodically compared. Disagreement of one or

more computers constitutes fault detection and requires exit from this state.

As long as two computers are fault-free, the rollahead recovery

procedure is used and, if it is not successful, the memory copy. If all

computers disagree at the same time, a system restart is initiated.

6-14

THIS PAGE INTENTIONALLY LEFT BLANK

6-15

2.3 A
STATE I Normal Operation STATE II State Vector Transfer or Rollahead STATE III System Restart

Multiplex (N>-3)
Description: A "good" computer transfers to Description: This is the recovery procedure

Description: The system is executing its I the bad one the information necessary for necessary for a multiple fault. It can consist
normal application routines under the super- A- the resumption of execution, assuming that no of extensive diagnostics and comparisons, to
vision of the executive. damage has occurred in the program memory. determine which memory contents are still

correct. There may be a reload from a backup
Entry Conditions: Entry Condition: memory. Execution is restarted from a well defined

1) Normal multiplex system start up. 1) Detection of a fault in State I. restart point. Depending on the application, this

2) Completion of recovery by: procedure may or may not exist.

2.1 State Vector Transfer Exit Conditions: Entry Condition:
2.2 Memory-Copy 2.1 A A) Completion of the transfer after the
2.3 System Restart2.3 Sys Restart 21t~o1) Detection of simultaneous faults in State I.
2.4 Replacement of One Computer ROLLAHEAD DURATION has elapsed: go to

by a Spare State I. The rollahead is successful

2.5 Switching off One Computer according to the ROLLAHEAD SUCCESS
PROBABILITY and if the fault had dis- A) Completion of the restart after the RESTART

Exit Conditions: 2.5 D.A appeared before entering the rollahead DURATION has elapsed.
(fault duration smaller than DELAY B) Too many missed iterations: go to system

A) Detection of a fault: go to start BEFORE RECOVERY). failure.
of a state vector transfer recovery B) Identification of a recurrent fault
attempt after the DELAY BEFORE (when State II is called twice in less
RECOVERY has elapsed, than the ROLLAHEAD RECURRENCE INTERVAL

B) Simultaneous faults: go to system duration): go to State VII (memory copy).
restart. C) Too many missed iterations: go to system C

failure.
2.4 j2.5 12.2 D) Another fault is detected during the

rollahead. The recovery is abandoned.
D.A) N>4: go to State I and N-N-1.
D.B) N=3: go to State IV.

D.B B

A,C.A B.B

STATE XII Introduction of a Spare A 11

Description: A spare is checked, condi- STATE VII Memory Copy

tioned and switched in by a "good" computer. A.B,C.A Description: A "good" computer transfers to the

Entry Conditions: C.B bad one the content of its memory and the state
Entry Conditions: vector. The memory copy is done on the base of STATE V System Failure

1) Identification of a recurrent fault in T4 B.A cycle stealing. Computation continues in the
State VII and a spare is available. STATE IV Duplex (N=2) good computers. It corrects the transient with D Description: Heaven or Hell.

2) Identification of a bad spare and a a probability equal to the MEMORY-COPY COVERAGE.
B. second spare is available. Description: The system is executing its normal 2 B.C Entry Condition:

Exit Conditions: application routines but 2 computers only are OK. EntryA) Failure conditions are listed in
1) Identification of a recurrent fault in each state.

A) Completion of the conditioning: go B.CC.B .3 Entry Conditions: State II.
to State I with S-S-1, after the 1) Normal duplex system startup. EExit Condition:
CONDITIONING TIME has elapsed. 2) Identification of a permanent fault and no 1) Alas, alas, alas -- no exit.

2 spare is available. A) Completion of the memory copy after the

B. If Sa2, restart State XII with S-S-I. aspare. State I.
B.B) If S=1 and N4, go to State I with A 4) Occurrence of a fault during a recovery procedure. B) Identification of a permanent fault

N-N-I and S=O. 5) Completion of recovery by rollback. (when State VII is called twice in less
B.C) If S=l and N=3, go to State IV with S=O. than the MEMORY COPY RECURRENCE INTERVAL
C) A fault is detected in a computer (but 5 Exit Condition: duration).the spare): B.A) A spare is available: go to State XII

C.A) If N>3 go to State I with N-.N-. A) Dete(introduction of a spare).
C.B) If N=3: go to State IV. B.B) No spare and N 4: go to State I with

N-N-1.
B.C) No spare and N=3: go to State IV (duplex).
C) Another fault is detected during the

memory copy. The recovery is abandoned.
C.A) N>4: go to State I and N-N-1.
C.B) N=3: go to State IV.

STATE IX Diagnosis D) Too many missed iterations: go to system
STATE VIII Rollback in Duplex failure. (The maximum number of itera-1 Description: Each computer runs a diagnostic on itself tions we can afford to miss is MAXIMUM

Description: The 2 computers repeat the last Description: Each computer runs a diagnostic on itself. DOWNTIME divided by ITERATION PERIOD).
segment of programming, hoping that this time they Entry Condition:
will agree. A 1) Unsuccessful rollback.
Entry Condition: Exit Conditions:

1) Detection of a fault in State IV. A) Successful completion of the diagnosis: go to

Exit Conditions: State X (simplex). The duration of the diagno- STATE X Simplexcription: The computer repeats the last
sis is computed from the MEAN DIAGNOSIS TIME. segment of programming hoping that this time

A) Successful completion of the rollback: B) Unsuccessful diagnosis: go to system failure. 1 Description: The last good computer is executing A the error condition will not reoccur.the probability of success of a rollback The proportion of successful diagnosis is given the normal application routines.is the same as the ROLLAHEAD SUCCESS by the STP EFFICIENCY. Entry Condition:
PROBABILITY. Rollbacks are repeated as B 1 C) Too many missed iterations: go to system failure: Entry Conditions: 1) Detection of a fault in State X.many times as the MAXIMUM NUMBER OF it is quite possible that because of successive 1) Successful diagnosis after the ISOLATION
ROLLBACKS. rollbacks and diagnosis, the system missed more DURATION has elapsed. Exit Conditions:

B) Unsuccessful rollback: go to start iterations than allowed by the MAXIMUM DOWNTIME. 2) Completion of recovery by rollback. 2 A A) Completin of the rollback: go back
diagnosis attempt. 2))Completiontoforecoverytby rollback.c2kA A)oCobackt

C) Too many missed iterations: go to B.C Exit Conditions:to tate . (The probability is stillsystem failure.the rollahead success probability).

The rollback duration is equal to the TIME A) Detection of a fault: go to start B) Too many missed iterations: go to
BETWEEN COMPARISONS. Too many rollbacks may rollback. The fault is detected system failure. (The same remarks as
cause a missed iteration, if the minor cycle according to the DETECTION PROBABILITY. in State VIII - exit C apply.
cannot complete during the ITERATION PERIOD. B) Undetected fault: go to system failure.
The MAXIMUM DOWNTIME gives the maximum number C B
of iterations we can afford to loose.

FOLO UT ERAML
UT RA 6 - 15 FIGURE 6.4-1 SIM TOR DETAILED STATE DIAGRAM

PRECEDING PAGE BLANK NOT FILMED

6.4.2 Rollahead (or State Vector Transfer)

The rollahead state is entered to simulate the computer system's

attempt to recover from a detected single fault. The state vector (consisting

of program variables and all register contents) of one good computer is used

to replace the non-agreeing computer's state vector. However all transient

failures are not corrected by this procedure since a bad instruction cannot be

restored. The approach taken in the simulation is to provide for the specification

of a rollahead success probability. This probability can be formally defined

as:

P = Pr [fault is corrected given that a fault has occurred,
suc has been detected, and its physical cause has dis-

appeared when correction begins]

An analysis, which gives consideration to the type of memory (e.g. 2 1/2D, 3D,

DRO, NDRO, etc.) and the consequences of memory faults, will yield an estimate

of the rollahead success probability(or program integrity).

6.4.3 Memory Copy

This recovery procedure is entered after a specified number of rolla-

heads have been completed unsuccessfully. The memory contents of one good

memory are transferred into the faulty memory. In order to avoid interruption

of computation, the transfer is effected on the basis of cycle stealing. It

ends with the updating of the state vector of the faulty computer.

Since, during a memory copy, normal application routines continue,

it is possible that a new fault shows up. The following (conservative) assump-

tion has been made in order to simplify the simulation. Upon detection of a

second fault during a memory copy, the memory copy procedure is abandoned and

the computer for which this memory copy was intended is discarded.

It is assumed that memory copy provides recovery from transient

faults which have disappeared when the memory copy began with a probability

equal to the memory copy efficacy.

6.4.4 System Restart

The system restart state is entered when all computers disagree upon

comparison. The recovery procedure from this state may consist of a memory

6-17

verification. Relevant memory locations are read, voted upon and restored.

Extensive diagnosis may also be run. Finally, if a backup memory is available,

reloading may be possible. Then the application program is reinitiated from

the restart point.

After a successful system restart, the system returns to the normal

operation state. However, since all computers stop their normal computation

during a system restart, this recovery procedure is time critical.

Note that in a benign fault envi ronment the probability of having

a system restart is quite small (=1 for 1 million faults). However, system

restart is necessary if the fault environment is so harsh that bursts of
faults can hit several computers at a time or if the probability of a
short power failure is not negligible.

6.4.5 Introduction of a Spare

If a spare is available, it should be activated once a permanent
fault has been recognized. As part of the activation process, the spare is
checked and conditioned by one of the good computers. In the state-diagram
of Figure 6.4-1, spares are not available for the duplex and simplex simula-
tion. This is thought to be compatible with the expected applications.

6.4.6 Normal Operation (2 Units)

The normal operation (2 units) state is entered upon the determina-
tion that a permanent fault exists in one of the three computers of the computer
system. This state is quite similar to the normal operation (N units) state,
except that the only available recovery procedure is program rollback.

6.4.7 Rollback

The rollback state is entered upon the detection of a fault when the
computer system is in the normal operation (2 units) state. Rollback is the
term used to describe repetition of the program segment executed just prior to
the detected output disagreement. The state vector at the beginning of each
program segment is maintained in order that the r'ollback procedure may be
accomplished.

After the program segment has been repeated, the outputs of the two
computers are compared; if the correction is successful, the computer system

6-18

switches back to the normal operation (2 units) state. If the outputs differ,

the system rolls back again; this unsuccessful recovery process continues a

predetermined number of times before changing the computer system state to

diagnosis.

Since both of the active computers remaining in the computer system

must stop their normal computations during a rollback, this computer recovery

procedure may be time-critical. However, if comparisons are frequent enough,

a rollback should not last more than a few milliseconds.

6.4.8 Diagnosis

In triplex, voting provides a very easy and efficient way of isolating

the faulty unit. Unfortunately, a disagreement upon comparison in duplex does

not indicate which of the computers produced the wrong value. That is why the

main recovery procedure in duplex is the rollback since there is no transfer

of information from the good to the bad computer for such a procedure. But,

if the rollback does not succeed, the bad computer must be isolated. For that

purpose, self-tests are run. If they are successful, the faulty computer is

isolated and the system switches to simplex. If unsuccessful the system is

unable to decide which computer is faulty and the system fails. Diagnosis pro-

grams are obviously time critical. Note that it would be possible to include

a memory copy which would take place once a diagnosis had been successful: the

memory of the good computer would be copied into the bad one. However, this

improvement is not so good as it would seem since many transients cannot be

detected through diagnosis.

6.4.9 Normal Operation (Simplex)

In simplex operation, comparison is no longer available for detection

of faults. We must rely mostly on the RETs to detect faults. CPU transients

are difficult to detect. Some may be caught through go/no-go counters and

storage protection. Memory faults are easier to detect. Parity check is

especially useful. When a fault is detected a rollback is initiated. If the

fault is not detected, a failure occurs.

6.4.10 Rollback in Simplex

This is the same procedure used in duplex. Since it is the only

recovery algorithm available in simplex, it is repeated as long as it is not

6-19

successful. If recovery from the fault cannot be effected, a system failure

will occur when the system has been down too long.

6.4.11 System Failure

The system failure state is entered when the system is unable to

run properly any longer, or when computation requirements have not been met for

too long a period of time. Upon recognition of the condition of a system

failure, the DRIVER program discontinues the simulation of a mission.

Causes of fail ures are:

1. Excessive time in rollahead, memory copy, or rollback:

It should not happen since the system must be designed

so that a recovery procedure does not endanger it. How-

ever it might happen that the continuous repetition of

such procedures be fatal for the successful completion

of the mission.

2. A too long system restart: A system restart is a very

rarely called procedure. But it is long (a few seconds),

and may not always be tolerable.

3. Diagnosis incomplete when available recovery time expires:

Normally, diagnosis follows rollback. It is possible

that these two recovery procedures sometime take too long.

4. Undetected faults in simplex.

5. A too long rollback in simplex: This happens when a

permanent occurs or when a non-recoverable transient

occurs.

6. EEM failures: In case of non dedicated EEMs the system

fails when all EEMs fail or when all but one fail and the

computers are unable to decide which is the good EEM.

7. Bus failures: The system fails when all buses fail or

when all but one fail and the computers are unable to

decide which is the good bus.

8. Actuator/sensor failures.

6-20

6.5 SIMULATOR IMPLEMENTATION

Because of the fault-driven nature of the simulator, the first

activity in the simulation is the generation of a ,table of faults occuring

in a given number of missions. The fault generator and the computer-system-

state subroutines are described in the follQwing subsections.

6.5.1 Fault Generation

6.5.1.1 Introduction

A major portion of the simulator is dedicated to the generation of

faults according to mathematical algorithms which describe the occurrence of

faults in the various components of the computer system. Two approaches to

handling this problem were considered:

1. Generation of one fault at a time.

2. Generation of a fault table describing the faults which

occur in the computer system between 0 and a time T.

The first approach is suitable if we consider only single faults

and if we simply describe fault occurrences within the computer system, e.g.,

the fault-arrival rate in the system is X and the probability that a fault is

in the ith part of the computer system is P . This procedure is described

in LYON 62.

Since we must deal with transient failures also, we want to know

how the computer system behaves in case of multiple faults. Furthermore, if

the faults do not occur according to a Poisson law in all modules (burst of

transient failures for example), the method described in LYON 62 is not

readily applicable.

A more efficient and more general approach is to generate a fault

table prior to simulation. This also makes the simulation program more

functionally modular since, once the simulation-has begun, we have only to scan

the fault-table to determine when and where the next fault occurs.

6.5.1.2 Parameters

The parameters necessary to generate the fault table for a simu-

lator run are a part of the parameters of simulation which are input by the

simulator user for each simulator run.

6-21

6.5.1.2.1 Description of the Computer System

The computer system to be simulated is composed of n identical

computers, each composed of m modules.

6.5.1.2.2 Description of the Fault Distributions

For each of the m modules, the distribution functions to be used

in the generation of both permanent and transient faults must be indicated by

the simulator user. Specific subroutines for the chosen distribution functions

are then called and the parameters of the distribution are passed to these

subroutines.

For permanent faults, only the Poisson distributions have been

implemented. This is generally considered in the literature to be most

realistic.

For transient faults, Poisson and burst distributions have been

considered. Poisson distributions are considered because of their tracta-

bility and acceptance for the permanent fault case. Burst distributions are

thought to be important because many transients'likely are caused by compo-

nents working near the limits of their tolerance specifications. As long as

the conditions do not improve, faults will occur often in these components.

A burst of transients is defined by its duration and the rate of transient

occurrence during the burst. Bursts occur according to the burst rate.

6.5.1.2.3 Description of the Fault Duration

For each of the m modules, the distribution function of the

transient failure durations to be used by the simulator programs must be

indicated by the simulator user. Specific subroutines for the chosen distri-

bution functions are called by the Driver and the subroutines receive the

parameters of the distributions.

At the present time, the uniform and the exponential distributions

have been implemented.

1. Uniform Distribution -- The transient failure duration is

uniformly distributed between a minimum and a maximum

duration.

6-22

2. Exponential Distribution -- The transient failure duration

is exponentially distributed. The mean duration is 1/y.

6.5.1.3 Description of the Fault Table

The fault table consists of 300 records ordered according to the

occurrence time of each fault. This table can contain up to 150 permanent

faults and 150 transient faults. It has the following record format:

Occurrence

Time Duration Module Computer

Permanent failures are identified by a duration longer than the

mission time.

6.5.1.4 . General Organization of the Fault Generator

The first step consists of generating a table of permanent failures

and a table of transient failures for each module in the computer system.
Then these tables are merged into one sequentially-ordered (master) fault

table. The general organization of the fault generator is presented in

Figure 6.5-1.

6.5.1.5 Determination of the Occurrence Time of the Faults According
to a Poisson Distribution Function

Faults occurring by a Poisson distribution process have a probability
that one fault occurs during a small interval of time, dt, as follows:

P1 = Adt. (See PARZ 60).

The probability of no faults, Po, occurring during the time interval
dt is, Po = l-xdt, and the probability of more than one fault occurring is 0.

A Poisson distribution process has two very important properties:

I. It is memoryless: This means that the probability of a fault

occurring between times t and t+dt is independent of fault

occurrences before time t..

6-23

Parameters:
Number of computers n
Number of modules m

Start in each computer.

i 1 i- 1

Enter the perma-
nent,transient Find the ith
distributions and fault

duration
distribution

Enter the Decide randomly
parameters of inwhichcomputer

the distributions the ith fault
occurs Merging

into one

Generate the Record the table

occurrence time ith fault in the
of thepermanents ith fault in the

Generation table

of 2 m

Generate the tables i + I I
occurrence time
of the transients

No Last
Fault

For each transient
generate its Yes

duration

End

ii + 1

No Last module

Yes

FIGURE 6.5-1 GENERAL ORGANIZATION OF THE FAULT GENERATOR

6-24

2. The probability density function for the random variable, T , i.e.

the interarrival time between two consecutive faults, is

fT (t) = xe- t
T

Thus the probability distribution function of Tr is:
t

P[Tr t] = fTr (u) du

- At

Thus the probability of having no fault at time t is:

R(t) = e- t

A difficulty arises at this point since the random number generator

(function) available in the CYBERNET system produces outputs which are uniformly

distributed on the interval O0U<1. The outputs of this generator can be

converted using the approach described below. (HILL 70, SHRE 66).

We are concerned with the random variable Tr, the interarrival

time between faults, whose distribution function is given above as

P[Tr!t] = 1 - e-At

For the purposes of the simulation we wish to obtain values of t. We now

note two important facts. First, 0OP<1. Second, by algebraic manipulation

it is possible to solve for t, e.g:

t =1 In (1-P)

Thus, for any value of P in the valid range, a value of t can be calculated.

By generating values of P using the random number generator, which produces

uniformly distributed numbers between zero and one, t can then be

calculated.

A more formal description of the process follows. Using the

random number generator which gives a number U uniformly distributed on the

6-25

interval O0U<1, we have to compute Tr which is exponentially distributed.

That means that we have to find a function f(U) such that:

T r = f(U)

and P[U*u] = u (uniform distribution):zz> P[Tr-t] = l-e-At
(if O-u<l)

If Tr = f(U), we can define the inverse function g(Tr) such that

U = g(TT).

Thus, we have:

P[Tr-t] = 1-e-t

= P[f(U) t]

= P[U g(t)]

= g(t)

The last equation is true since U is uniformly distributed on

the interval, O0U<l. Thus we know that the unknown function f(U) is the

inverse of the function g(t) = l-e-At

Hence:

u = g(t) = 1-e - At

t in (l-u) = f(u)

Since we have just found the function f, we can write

Tr =-Iin (1-U)
A

But we can have a simpler expression: U is uniformly distributed
on the interval, 05U<I. Hence 1-U is also uniformly distributed on the same
interval. This implies that the distribution of Tr does not change if we
replace 1-U by U.

Finally, we have shown that if U is uniformly distributed on

OU<1, then T= - 1in U is exponentially distributed, the parameter of the

distribution being X.

6-26

Using the random number generator provided by the CYBERNET system,

we determine the different interarrival times and thus the occurrence times.

The flowchart of the generation of the occurrence times of the faults in

one module is presented in Figure 6.5-2.

6.5.1.6 Determination of the Duration

As stated earlier, both exponential and uniform distributions of

transient fault duration are available in the simualtor. If the transient

duration is exponentially distributed (parameter y), we determine a duration

DT for each transient:

D 1 In U using the same general procedure described
T y

for the occurrence time. If the duration is uniformly distributed on O<DT<Dmax'

the duration DT is DT = Dmax x U.

6.5.1.7 Determination of the Occurrence Time of the Faults According
to a Burst Distribution Function

The occurrence time and duration of the bursts is determined as in

Sections 4.3.1.5 and 4.3.1.,6. Then, for each burst, the occurrence time and

duration of the transients are determined.

6.5.2 Normal Operation (3 or More Units)

The detailed diagram (Figure 6.4-1) shows that either single fault

detection, or multiple fault detection may happen in this state. A multiple

fault is detected when all computers disagree at the same time (or indicate an

error condition). Note that in quintuplex for example, a fault which would hit

only 2 computers at the same time is not considered as a multiple fault. This

is due to the fact that 3 computers still agree and the good state of the system

is known. Multiple faults necessitate special care since the good computers are

not known. A system restart is to be entered. Single fault detection initiates

a rollahead. Figure 6.5-3 is a flowchart of State I.

6.5.3 Rollahead

A general flowchart of the rollahead state is presented in Figure

6.5-4. A rollahead does not correct all faults. Memory damage cannot be

recovered from through this procedure.

6-27

Start

t-0O

1c1

Call random
number

generator

Determine
interarrival

time T,

tt +t-t +. Tr

Record t as the
occurrence time

of the ith fault

t..--i + 1

No t > Mission Yes
Time

End

FIGURE 6.5-2 GENERATION OF THE OCCURRENCE OF THE FAULTS
IN ONE MODULE (POISSON DISTRIBUTION)

6-28

Start

Lurking es
Fault

No

Scan Fault
Table for
Next Fault

Compute
Detection Time

of this Fault

Determine
Next Fault

to be Detected

No

N Multiple e

Go to Go to
Rollahead System
Recovery Restart
State II State III

FIGURE 6.5-3 NORMAL OPERATION STATE I
6-29

Start

etren Yes
ecognize

No

Compute its the Go to
rom ault PriC

detection time to recovery Memory Copy
comple-

tign State VII

2ndfau
is detected ina Yes

another

No

Suppress
Corrected ore than No

3 computersFaults

Yes

Update Go to State I

Detection Time and decrease Go to

of the Others the number of State IV
computers by

one

Go to
State I

FIGURE 6.5-4 ROLLAHEAD STATE II FLOWCHART

6-30

The probability of success of rollahead is estimated by analyzing the

memory organization. The main conclusions are:

1. With a DRO memory with protection bits, CPU and I/O faults

do not cause memory damage. For these faults, the rollahead

is always successful.

2. For memory transients, the analysis is more difficult. A

first consideration is given to DRO and NDRO memories. Then,

consequences of faults in the different circuits should be

assessed. It must be determined which transients are likely

to cause an instruction or constant to be destroyed. Thus, we

can get an estimate of the success probability of rollahead.

According to this estimate, each fault is marked as recoverable

(or not) by rollahead. (It must not be forgotten that in any

case permanents cannot be recovered from by such a procedure).

The probability of success is much higher for an NDRO than

for a DRO memory.

6.5.4 Other States

The subroutines describing the remaining states all have the same

basic structure. For all of them, the fault table is scanned and then a decision

is made as to which is the next state. Decisions are taken as described in the

exit conditions shown on the detailed state diagram.

6.5.5 Introduction of the Scheduling Mechanisms

In Section 4.1 one of the criteria for correct execution of a set of

programs is that the execution time of each program does not exceed a specified

limit. Thus it is necessary to provide in the simulator a method for determina-

tion of the consequences of output delays and the number of missed iterations

due to execution of recovery procedures.

Scheduling mechanisms are described in Section 3.3. Section 3.5

describes how recovery procedures fit in the different schemes. We list below

the fundamental remarks - as far as simulation is concerned - of Section 3.5.

1. Dichotomy of scheduling mechanisms into 2 classes:

synchronous type and asynchronous type mechanisms.

6-31

2. The rollback structure of minor cycle computations

corresponds with the scheduling of the computations

for any of the scheduling mechanisms.

3. In the case of a synchronous mechanism, each segment

of a major cycle computation is similar to the minor

cycle computations in that the rollback structure and

the scheduling of the segment correspond.

. With an asynchironous type, things are much more

complicated. If comparisons take place only when

an output occurs, the entire computations must be

repeated if an error occurs in a major cycle.

Furthermore, rollback may also be necessary for the

minor cycle computation taking place during this major

cycle.

The main point of the simulation is to evaluate the probability that

a mission is successfully completed. One instance of failure is when, because of

recovery procedures, all computations necessary to the success of the mission

cannot be achieved. It can be assumed that for a specific type of mission

there is a maximum number of consecutively missed minor cycles. For example,

if the aircraft is unstable, this number may be no more than 1. For some other

type of mission, it may be a hundred. Thus, our first goal will be to count the

missed minor cycles, and record a failure whenever too many consecutive minor

cycles are lost. Note that because of the second remark, the simulation will

be very similar for both asynchronous and synchronous cases.

The main difference between these two cases is for major cycles. A

rollback, in an asynchronous system may considerably delay the completion of a

major cycle computation and may also cause more than one rollback.

We shall first look at the simpler case, i.e. synchronous scheduling.

6-32

6.5.5.1 Synchronous Scheduling

m MM m Mm M m M m M

I I I I I I

P

m: Minor Cycle Computations

M: Major Cycle Computations

I: Minor Cycle Initiation

P: Minor Cycle Period

After the minor cycle processing is completed, the remaining time

before the next RTI is used for major cycle processing.

6.5.5.2 Detection of Faults

Faults are detected when comparison takes place. A fault in
the CPU is detected on the comparison following its occurrence. Things

are different for memory fault. If a fault hits a minor cycle program,

detection will occur in the current minor-cycle period. But if it hits a

major cycle program, detection occurs during the major cycle following its

occurrence. Thus, it is quite possible to have an undetected fault for a

while. In any case, having frequent comparison points will make detection

faster.

Some faults are detected earlier than the comparison following their

occurrence. These are the faults detected by RETs. For example, a bad memory

word may cause a parity error. Let's examine the consequence of this feature.

If the recovery procedure is the rollahead, the error interrupt is left pending

since the state vector transfer can be initiated only at well-defined points.

It is at these points that comparisons take place. When the recovery procedure

is the rollback, the error interrupt can be immediately taken into account and

the rollback can be initiated.

6.5.5.3 Iteration Losses

Our goal is to determine if a recovery procedure has lasted too long.

A subroutine determines the number of consecutively missed iterations. The main

6-33

difficulty is that it is not enough to determine if recovery from a fault took

longer than a specified time. We must be aware that another recovery in the

same cycle might have decreased the time available for the second recovery.

6.5.5.4 Asynchronous Scheduling

As explained earlier and in Section 3.5.1, a fault occurring in a

major cycle may cause more than one rollback/rollahead. This happens when the

major cycle routine where the fault occurs is interrupted by a minor cycle routine.

This is simulated in the following way. The interrupt rate and the average

length of a program segment are known. Thus it is possible to compute the

probability of having an interrupt coming between fault occurrence and the end of

the program segment, when the comparison and detection takes place. If an inter-

rupt has come in between, we assume that two recovery procedures take place.

The recovery procedure is assigned the highest interrupt priority.

If any other interrupt comes during the recovery, it is ignored, thus causing

a missed iteration.

6.5.6 EEM Faults

The External Electronics Module is the additional hardware in charge

of the voting and the recovery initiation. It is subject to faults and con-

sequence of faults in the EEM must be assessed. There are roughly two kinds of

organization: dedicated and non-dedicated EEMs.

6.5.6.1 Dedicated EEMs

An EEM is associated with each computer. A fault in the EEM causes

the computer associated with it to fail. Thus the failure rate of the EEM can

be added to the failure rate of each computer.

A fault in the EEM may also cause in some configurations the loss of

the corresponding bus. Analysis of the EEM design should yield the probability

that such a fault happens.

6.5.6.2 Non-Dedicated EEMs

In this case, EEMs are not directly associated with computers. The

computers vote on all EEMs or at any time, a primary EEM is chosen and switched

to all computers. In case of failure, another one is chosen. In both cases,

failure of an EEM does not cause a computer to fail. As long as one computer

and one EEM are still good, the system can continue to run.

6-34

Faults in an EEM do not cause a recovery procedure. These are masked

by voting. If there are only 2 EEMs, self-checking properties are used to deter-

mine which EEM has not failed. Thus the probability of fault detection in an

EEM must be estimated.

6.5.7 Input-Output Faults

There are many possible I/O configurations (see Section 2). In order

to provide the user with a reasonable number of different possibilities, we have

modeled the two principal types of I/O configurations: these are the dedicated,

and non-dedicated bus configurations. It is expected that these will provide

useful approximations to systems employing variations of these approaches.

6.5.7.1 Dedicated Buses

This type of configuration is sketched on Figure 2.1-3. We list

below the assumptions made for modeling this configuration:

- When a computer fails, the bus and the sensors/actuators

associated with this computer cannot work any longer and

thus the simulator program considers them as if they had

failed.

- As long as two or more identical sensors have not failed,

the system is not endangered.

- When only one good sensor of a redundant set is left,

the system must be able to recognize the good sensor.

This is possible through use of reasonableness tests.

For each sensor, a coverage parameter must be estimated

by the designer. This coverage is the probability that

if all but one identical sensors are faulty, the system

is able to recognize the good one.

- Failure of a complete set of identical sensors is considered

as a system failure.

- Actuators are modeled in the same way as sensors. This is

a valid assumption if actuators can be partitioned, each part

being associated with one bus.

6-35

The condition of each of the devices in the system is represented

by a Boolean variable, with a one indicating a healthy device, and zero in-

dicating a failed device. The device-condition set is summarized as a

Boolean matrix, M(B,S), where B is the number of busses and S is the number of

sets of redundant devices. In the case of dedicated busses, when computer i

fails, all devices connected to computer i's bus have been forced into what

is, in effect, a failed state since it is no longer possible to communicate

with them. For this case, M(i,j) is set to zero for all j.

Figure 6.5-5 is a sketch of such an organization. All devices of

set 2 are similar. When device 3 of set 2 fails, the device-condition matrix

M becomes

M 1 1 1 1

If subsequent to this, computer 2 fails, then in effect bus 2 and all devices

connected to it are unusable. Thus M becomes

1 1 1

M = 0 0 0 0

1 0 1 1

It appears that the good computers may have difficulties in deciding

which of the devices in set number 2 is still good. If there is no way of

deciding which is good, the coverage for the second set is input as 0 and a

system failure is the consequence of the failure of computer 2. If it is

always possible to decide which is good (totally self-checking device), then

there is no system failure in this case. Intermediate cases are possible.

The coverage is then a number between 0 and 1.

At the end of the simulated mission, each column of the matrix is
scanned. If a column has no "1", it is a system failure. If a column j has
only one "1", a random number Q£x<l is generated and compared with the coverage
of the jth device. If the random number is the bigger, it is a system failure
condition.

6-36

BUS 1
COMPUTER

1

BUS2 EXTERNAL
COMPUTER DEVICE

2 SET
1

COMPUTER

3 1 US 3

EXTERNAL EXTERNAL EXTERNAL
DEVICE DEVICE DEVICE
SET 2 SET 3 SET 4

FIGURE 6.5-5 EXAMPLE OF DEDICATED BUS CONFIGURATION

6.5.7.2 Non-Dedicated Buses

The modeling is the same as in the previous case except that the

failure of one computer does not cause a bus to fail. Thus, it would seem that

this system is always more reliable than a dedicated bus configuration. How-

ever this is not true since the reliability of the voter/switch must be taken

into account. It may be the EEMs which perform this voting function.

Whether the busses are dedicated or not, external device set 1

is by definition the bus: if a bus fails, all devices connected to this

bus fail.

6.6 TESTING

6.6.1 Fault Generator

This is the easiest part to test. Given a definite distribution its

mean and variance can be computed. They can also be computed from a sample ob-

tained from the fault generator. Comparison of the two sets of results and

taking into account the size of the sample permit to validate (or not) the

generator.

6.6.2 Simulator

Validation of the simulator is a more difficult task and as a matter

of fact, could only be completed when comparisons with experimental results could

be achieved. Obviously, this is not possible and some alternate route has to

be found.

First of all we test that the simulator does what we can expect of

it in many different cases where the faults are known. For these tests, the

faults are generated by hand so that the different paths of the program are

exercised.

After being sure that the program does what the programmer expects,

the results have still to be tested. The general case cannot be tested. How-

ever, by simulating simple configurations where some parameters are chosen

such that they do not affect the outputs, results are obtained which can be

compared with results of the modeling.

6-38

6.7 SAMPLE RUN

The output of the simulator for the simulation of a software TMR

configuration without memory copy is presented in Figure 6.7-1. The remarks

below refer to some of the parameters.

1. In this run, we have not studied sensor reliability.

However, the program requires at least that 2 "sensors"

be indicated. By definition "sensor" 1 is always the

bus. In this case, sensor 2 never fails and thus does

not influence the simulation.

2. Here we have chosen a very short fault duration (lps).

Thus, it is not useful to wait for the dissipation of the

fault when initiating a recovery procedure, since faults

are detected only at the comparison every 5 milliseconds.

3. These parameters are irrelevant in this case since there

is no memory copy.

4. The restart duration is chosen longer than the maximum

down time (30 ms). Since computation is stopped during

a system restart, a restart implies here a failure

condition.

5. Here we mean the proportion of memory which is affected

by minor cycle programs. When memory damage has occurred,

detection will be 100 times slower if the fault hit a

major cycle program than if it hit a minor cycle. In this

case faults are four times more likely to hit a major than

a minor cycle program. The choice of .2 is arbitrary for

this case. It is not a critical parameter since even if

3 seconds elapses before detection of the fault, the

probability of having another fault in the mean time

is very low.

6. Coverage means here the probability that the system

recovers from a transient without discarding a computer.

7. From the size of the sample, we can conclude that

6-39

o Multiplex coverage = 75% (+ 1%)

O Duplex coverage = 73% (+ 3%)

o Diagnostability = 89% (+ 2%)

O Failure Prob- = 149 = 3 (10)-3 + .4 10) 3

ability After 50000
100 Hours

The number of transients occurring in simplex is the difference

between the total number of transients and those occurring in multiplex

and duplex (recovered or not). In this case, this different yields

10175 -(6994+2319+615+223) = 34. Thus the value for the simplex coverage

is not very significant since the size of the sample (34) is too small.

6-40

TRIPLEX
RECOVERY PROCEDURE WITH MORE THAN 2 COMPUTERSI ROLLAHEAD ONLY
RECOVERY PROCEDURE IN DUPLEXI ROLLBACK

DEDICATED EEMS
DEDICATED I/0 RUSSES

NOTATIONSI
MODULE 1: CPU
MODULE 21 EEM(EXTERNAL LOGIC)
MODULE 3t MEMORY
MODULE 41 BUS AND EXTERNAL.DEVICES

SENSOR 1 IS THE BUSI FAILURES OF THE BUS CAUSES FAILURE OF ALL DEVICES ON THE BUS

DESCRIPTION OF THE SIMULATION I
NUMBER OF MISSIONS 50000
MISSION TIME 100,000 HOURS

DESCRIPTION OF EXTERNAL DEVICES
NUMBER OF ACTUATORS/SENSORS
PER BUS 2
SENSOR 1 DUPLEX COVERAGE: 1.000 RELATIVE FAILURE RATEI 1.000
SENSOR 2 DUPLEX COVERAGEt 1,000 RELATIVE FAILURE RATEI 0.000 See remark 1
IMPACT OF EEM FAULTS ON COMPUTER .100E*01
IMPACT OF EEM-: FAULTS ON BUS O.
IMPACT OF EEM FAULTS ON BOTH 0.

FIGURE 6.7-1 SOFTWARE TMR WITHOUT MEMORY COPY

(,4O3) AdOO AWW infOHIIPM HWJ. JVMIJOS L-L9 J3flgi.

dnOt4 H30 o0 14I~ LN-4SN~dI

bnlOH dd SO-A0'f' 3IVd 1N3NVdd3d I * nU

dinoH did to3d 31VO .N31SNVdi

dnfOH d13d CO-3S2* 31V6, IN3NVwNb3d I 31000uw

(IjJ'3N~dxC3) SONOD3SI11IN O NOii.vbnu iN31SNvdi

dnfOH b~i 0 u Vd IN3IvVfri83d 1 2 31POCUA

dfocH da~d EO-3SV6 3IVM iN3INi1d tI31lU

.LNAWNOH1IANJ i~lnv. 3H1 JO NOlldI6DS3O

002* WV89Umid 31DA3 buNIV AO A71S

SflNO03SI1lI14 OOOE 6I111 NMUU wnwlx1vyy
SONCS11IN~' UU0OY SNCbl8VdNO N3 M±:34 3WIi c

SNOI1Vd3il UOI *NOhiv?1PC i13AD murvwL

SUNO2D3S111lk4 0tO* NO11Vd1f!U 310A) 8ONI'W

SON0OS111' 000OUE 6UOI&~d NClIV8311

u sIbvdS .jo H43IdfN
U000U. O(NOI LVllU~ ICISI

U'&'7 AdjOh3.4 N1 A11118i~~umd NOI±1 AQ

us0. F'dD NI A1I118VeUd N0103130

SONOD3SIl111" U006 A 3p11 SISUN'9W1O NV3"%

UUEO AilI1leAIAbfls NVH9Ud
66bbo ADVOI.- AdOOAHOWb3Pt

SIOA11"UOUOUUU NUI vanu i~vi-tiSAb

SflNODASl11A~ UOUOOUU2 I(,IILVHf 0 AdjO)'A4(wI3A

SONO3
111h UO16 NOiIVtO lV-3WVI1Od

SONOT3SI11A 00000 AH3A0J3b -4O~ A'1130

J1SiM14JVVH Ae03AO03M .Hi AO NOlid1d:2h3U

RESULTS

NUMBER OF FAULTS 20402
NUMBER OF TRANSIENTS 10175
NUMBER OF USED SPARES 0
NUMBER OF QUADRUPLEX 0
NUMBER OF TRIPLEX 0
NUMBER OF DUPLEX 11613
NUMBER OF SIMPLEX 922
NUMBER OF ROLLAHEADS 18607
NUMBER OF MEMORY-COPIES 0
NUMBER OF SYSTEM-RESTARTS 0
NUMBER OF ROLLBACKS 1647
NUMBER OF FAILURES 149

NO. OF TRANSIENTS RECOVERED FROM IN MULTIPLEX 6994
NO. OF TRANSIENTS NOT RECOVERED FROM IN MULTIPLEX 2319
NO. OF TRANSIENTS RECOVERED FROM IN DUPLEX 615
NO. OF TRANSIENTS NOT RECOVERED FROM IN DUPLEX 223

CAUSES OF FAILURES: DUPLEX FAILURES 110
EEM FAILURES 0
I/O FAILURES 1
EXCESSIVE DOWNTTME 0
SIMPLEX FAILURES 38

PROPORTION OF MISSED ITERATIONS .6303E-08
LONGEST SERIES OF MISSED ITERATIONS 2

(BELOW, A COVERAGE HAS A VALUE OF -1 IF IT WAS NOT POSSIBLE TO COMPUTE ITIEMULTIPLEX COVERAGE: .751E+00 WHEN NO TRANSIENTS OCCUR IN ONE' 0 TME TWO MODES)
DUPLEX COVERAGE: .734E+00
SIMPLEX COVERAGE: .833E-01
CATASTROPHIC FAULTS: 0.
DIAGNOSTIBILITY .P93E+00

FIGURE 6.7-1 SOFTWARE TMR WITHOUT MEMORY COPY (Cont'd)

THIS PAGE INTENTIONALLY LEFT BLANK

6-44

7.0 PARAMETERS

Before either the analytic model or the simulator can be used for

the study of redundant computer configurations, values for their input para-

meters must be determined. The simulator-input values are obtained

by means of an analysis of the computer and configuration under study. The

simulator can then be used to obtain estimates of the parameters required by

the analytic model.

7.1 SIMULATOR

The simulator can be used to estimate the parameters required by

the mathematical model. It requires about forty inputs that are a function

of the system configuration, the application, the fault environment and the

computer's reliability and speed. Here we will consider the STP efficiency,

the program integrity and the BITE efficiency. The other parameters are

discussed in Section 6.3.

7.1.1 STP Efficiency

The Self-Test Program efficiency is the probability that the STP

returns a correct fault indication, once a permanent (or leaky transient)

fault has been detected. This is a fundamental parameter for (residual)

duplex systems since it gives the probability of choosing the good computer

for adaptation to simplex, once a fault has been detected through comparison

and not corrected by the rollback. The STP efficiency comprises not only the

proportion of faults detected with the diagnostic routine, but also the pro-

portion of faults detected through BITE features. Because of this, some

faults will be detected immediately, and others will be detected several milli-

seconds after the diagnostic program is initiated. If the resulting time loss

is critical, the mission could.fail. Thus we associate with the STP efficiency

its maximum execution time -- i.e. the time it takes to execute the entire

diagnostic program.

7.1.1.1 STP Requirements

For it to be effective, the STP in conjunction with BITE should

verify proper operation of the following modules.

7-1

1. Memory - program memory tested by sum check if main

store parity not available. Data areas tested by

write/read verification with test data.

2. CPU - All instructions should be executed in a

predescribed sequence with required variations and

exhaustive data patterns to insure that all instruc-

tions are operating properly. All addressing schemes

and registers should also be tested.

3. I/0 Test - The I/0 should be tested using I/0 wrap
checks to insure all I/0 functions are operating

properly.

BITE should include features such as time-out counters, I/0 parity, power
monitoring circuits and storage protection.

7.1.1.2 Efficiency Estimation

The STP efficiency analysis procedure consists of several steps:
1) partition the computer into several independent modules as described above,
and obtain reliability data and circuit documentation for the components of
each module, 2) determine which sections have no effect on computer operation
(such as unused I/0 channels, the AGE interface or elapsed time counter),
3) determine the failure modes (such as nand gate stuck on 1) for each circuit,
and its detectability based on the STP program and BITE, 4) the STP efficiency
can then be determined as follows:

Let ij = occurrence rate of jth failure mode of ith circuit

Bij = detectability of jth failure mode of ith circuit

ni = quantity of ith component

Then the STP program efficiency is given by:

Z n. r X.. Total detectable
STP efficiency = 1 failure rate

i n j 13 Total failure
rate

7-2

The maximum diagnosis time can be obtained from a sizing and

timing analysis of the STP program.

7.1.1.3 Typical Computers

Most computer manufacturers supply an STP program with an efficiency

of 95% (manufacturer supplied estimate) and diagnosis time of 10-30 milliseconds.

7.1.2 Program Integrity

The Program Integrity (PI) is the probability that a transient in the

memory will not result in any modification to the program. The rollahead/rollback

procedures correct any transient that doesn't destroy the program or last too

long. The program survivability parameter is used by the simulator in conjunc-

tion with the transient duration to estimate the rollahead/rollback success

probabilities, which in turn are used indirectly to estimate the transient

leakage.

7.1.2.1 CPU Faults

If the memory is not protected, then there is a small chance that a

CPU transient will result in a program modification, for it could cause indexing

errors resulting in incorrect address computations. Thus portions of critical

program segments (such as the landing module) not currently being executed could

be destroyed resulting in a lurking fault. This could cause a system failure

at a later time in the mission.

However, many contemporary aerospace computers have storage pro-

tection capability. This facility prevents the CPU from modifying the contents

of any protected storage locations.* Thus the chance that a CPU fault will

result in program modification is virtually zero, and the program survivability

to a CPU transient is essentially 100%.

The simulator currently assumes the existence of storage protection

in the candidate computer.

7.1.2.2 Memory

The program integrity for a particular computer memory is

dependent on its type and organization. A read-only memory offers the best

protection, as it provides a PI of 100%. The NDRO plated wire memory is not

Except under special conditions defined by the computer manufacturer.
7-3

quite as good, but has a much better PI than a DRO core memory. The DRO

core memory is particularly bad since incorrect data obtained because of

a fault occurring during a read cycle is written back into memory during the

restore cycle resulting in non-intentional modification to the memory (program).

Trade off data for DRO and NDRO memories is discussed in Section 9.

7.1.2.3 PI Estimation

The program integrity is defined by

PI A Pr iThe program memory contents is not modified, given
that a transient failure has occurred in memory}

The program integrity can be estimated using a top-down procedure consisting

of the following steps: (1) partition the memory into its functional compo-

nents; (2) estimate the relative transient failure rate (Ti/T) for each

component; (3) estimate the probability (PI1) that when a transient occurs

in the ith memory component, no program word will be damaged; and (4) calculate

the program integrity using this formula

PI =. [(PIi)(Ti/T)] (Equation 1)
1

where

PIi - Pr {Program memory is not modified when a transient
occurs in the ith component in memory}

T i Transient failure rate for the ith memory component

T = T i & Memory transient failure rate
1

The above formula is derived using the total law of probability which

states (PARZ 60)

if {Ai} is a set of mutually exclusive events

and Bc U A. Bc[AUA2U... UAn]
i

then Pr[B] =- Pr [BIA i] Pr [Ai]
7- 1

7-4

From the above theorem, it follows that if {A } is a set of mutually

exclusive events and (BAC) CU A.

ithen Pr [BIC] = Pr [BI(CnAA)] Pr[A.|C] (Equation 2)

If we let

B = event that a program word is modified

C = event that a transient fault occurs in memory

th
and A. = event that a transient fault occurs in the i memory

component we have

PI = Pr [BIC] = Pr {Program memory is not modified given that a
transient has occurred in memoryl

PI. = Pr [BI(CnAi)] = Pr {Program memory is not modified given
that a transient has occurred in
the ith component}

i/T = Pr [AiC] = Pr {Transient occurs in the it h component
given that a transient has occurred in
memory}*

Equation 1 can be obtained from equation 2, by substitution, as is shown

below:

Pr [BIC] =Z Pr [BI(CnAi)] Pr [AilC]

PI = [(Pli) x (T i/T)]
i

The program integrity can be determined systematically to whatever

level of detail is required. This is;because the PI determination procedure

is recursive, that is, the ith element can be partitioned into its components

or failure modes and an analogous procedure used for determining PIi from the

PI. .'s.

To obtain this result, we assumed that the transient inter-arrival times for
the memory and its components are exponentially-distributed random variables
with means of l/T and l/T i , respectively.

7-5

PI i =- (PIij)(T ij/Ti)

where PI..ij = Pr {Memory word damaged given that a transient has
occurred in the jth subcomponent of the ith component}

ij = Transient failure rate of the jth subcomponent of the
ith component.

The PIij can be determined by further partitioning, or by using

engineering judgment to estimate the effect of the transient. In the latter

case, we taken into account any masking effects. For example, only a small

portion of the memory is used during a read/restore cycle, so transients

occurring in certain components (such as address drivers) will only cause

damage to a program word when the component is used during the duration of

the transient. In this case, PIij is one minus the probability that the faulty

component will be used during the transient duration and its use will result

in damage to a program word.

7.1.3 BITE Efficiency

The BITE efficiency is the probability that the built-in-test

equipment will detect the occurrence of a transient or permanent fault without
the aid of a diagnostic program. This parameter is used by the simulator to
determine the effect of rollback in simplex, and uncovered transients in duplex.
It has only a negligible effect on configurations of 3 or more operating compu-
ters. This parameter is needed separately for both the CPU and the memory.

7.1.3.1 CPU BITE Efficiency

The CPU BITE efficiency is about 5% for most typical aerospace

computers (excluding the power supply). In order to obtain a more accurate
figure, a detailed analysis of the organization and data flow of the CPU is
necessary. This parameter only has a third order effect on RCS survivability,
thus a detailed estimate is unnecessary.

7.1.3.2 Memory BITE Efficiency

The memory BITE efficiency can be estimated by a procedure similar
to the STP estimation procedure. Briefly, the following steps are necessary:

1. Partition the memory into components and obtain the

failure rate (.i) and quantity (n i) of each.

7-6

2. Determine the important failure modes of each

component and its probability of occurrence (..ij).

3. Determine which failure modes can give a BITE

indication (such as parity). Let 8ij = 1 if the jth

failure mode of the ith component gives a BITE indication

and 0 if it doesn't.

4. The memory BITE efficiency is then given by the following

formula:

ni a 8ij Xij
Efficiency =

Zn. x.
i 1

7.2 ANALYTIC MODEL

An iterative relationship developed from the mathematical model

is used to evaluate reconfigurable computer systems employing transient recovery.

It requires values for the following parameters:

1. The effective computer failure rate.

2. The recoverability for 2, 3 and more operating computers.

3. The transient leakage for 1, 2, 3 and more operating

computers.

7.2.1 Computer Effective Failure Rate

The computer effective permanent failure rate is the value of x used

in the analytic model for system evaluation purposes. This failure rate may

be different from that solely attributable to the computer. This comes about

because some HASW systems involve the use of computer-dedicated EEMs such that

an EEM failure prevents the proper operation of its associated computer.

Obtaining the computer effective permanent failure rate is accomplished

using these steps. First, an estimate is obtained of the computer failure rate.

This may be obtained from the manufacturer or may be estimated independently by

the evaluator. Second, a rough design of the EEM is prepared.* Next, the EEM

Assuming an actual design is not available.

7-7

failure rate is estimated.. Then, the EEM design is analyzed and the portions

identified that, when failed, impair the computer's operation. The failure

rates of these portions are then added to the failure rate of the computer to

yield the effective failure rate. If, as is the case for some configurations,

other EEM failure impair bus operation, these failures are added to obtain a

bus effective failure rate.

7.22 Recoverability

This parameter is a measure of a redundant (N) computer system's

ability to recover to a less redundant (N-1) computer system from permanent

or leaky transient faults. The recoverability for 3 or more operating computers

is very close to 1.0 for a well designed system since a faulty computer is

immediately updated during the comparison. For a (residual) duplex system, a

self test program must be invoked to isolate the faulty computer, so the re-

coverability for duplex is dependent upon the STP efficiency.

The duplex recoverability is obtained as one of the outputs from the

simulator, which determines it by forming the ratio of the number of residual

simplex systems to the number of permanents and leaky transients in duplex.

7.2.3 Transient Leakage

The transient leakage represents the probability that a computer

will not completely recover from a transient, i.e. the system will mistake the

transient for a permanent fault and adapt from N to N-1 operating computers.

The simulator estimates the transient leakage for 1, 2 and 3 operating compu-

ters by determining the ratio of uncovered to covered transients in each case.

The transient leakage is dependent on the memory type, the transient duration,

and the transient recovery algorithms used.

7-8

8.0 COMPLEMENTARY ANALYTIC-SIMULATIVE TECHNIQUE

8.1 OVERALL STRUCTURE

The analytic modeling approach described in Section 5 and the

simulation technique described in Section 6 each has its strengths and limi-

tations. However when these two system evaluation approaches are combined,

and supplemented by some engineering analysis, a very powerful technique re-

sults. The combination is illustrated in Figure 8.1-1.

This Complementary Analytic-Simulative Technique (CAST) evolved as

it became evident that neither analysis nor simulation alone could satisfy

all the RCS evaluation requirements. Analytic modeling provides flexibility

and rapid, economical data-generation. However.the solutions for some configu-

rations are very cumbersome and in certain cases the mathematical model formu-

lated is intractable. Simulation permits computer system details to be included

easily, but data generation is slow and expensive. CAST permits the user to

obtain the best features of both analytic modeling and simulation.

8.2 RCS ENGINEERING ANALYSIS

The RCS engineering analysis is performed to provide six categories

of information to the analytic modeling and the simulation. These information

categories are:

1. Configuration Particulars

2. Fault Environment

3. System Failure Criteria

4. Software Structure

5. Recovery Features

6. Test Features

The configuration particulars are: the computer system type, e.g.

adaptive or non-adaptive, etc.; the maximum number of machines; and the external

hardware utilized.

The items provided under the fault-environment category are: the

permanent-fault occurrence rate; the transient-fault occurrence rate; transient

duration; and occurrence rate for bursts of faults.

8-1

ANALYSIS MEASURE

SIMULATION

FIGURE 8. 1-1 FAULT-TOLERANCE MEASURES CAN BE PRODUCED THROUGH
A COMBINATION OF ENGINEERING ANALYSIS, SIMULATION,
AND ANALYTIC MODELING

8-2

There are three system failure criteria that may be applied. These

are: missed iterations; output not delivered in time; and/or a critical

computation missed.

The software structure information that is provided as a result

of the RCS engineering analysis includes the type of scheduling mechanism

employed in the executive, e.g. synchronous or asynchronous; and the general

sequence of the applications program segments.

Recovery features deal principally with the specification of which

recovery algorithms should be used and in what sequence. The six basic possi-

bilities are: rollahead; memory copy; rollback; system restart; system

adaptation; and spare introduction.

The final category of information produced by the RCS engineering

analysis is that of test features. This category includes information about:

self-test programs (e.g. effectiveness and maximum diagnosis time); the use of

error detecting, error-correcting codes; the use and effectiveness of built-in

test equipment; output results comparison; voting of output results; and

finally reasonableness tests.

8.3 SIMULATION

The results produced by the simulator developed have been described

in detail in Section 6.3. The reader is merely reminded here that the following

items are available as simulator outputs:

1. Permanent-fault coverage

2. Transient-fault coverage

3. Detectability

4. Diagnostability

5. Recoverability

8.4 ANALYTIC MODELING

The analytic modeling provides the following measures of fault-

tolerance:

1. Computer system survivability (or failure probability)

2. Computer system reliability

8-3

Figure 8.4-1 is a summary diagram of CAST showing what is produced

by each of the three aspects of the technique.

8-4

CONFIGURATION PARTICULARS

*COMPUTER SYSTEM TYPE
• MAXIMUM COMPLEXITY
* MODULARIZATION
*EXTERNAL HARDWARE

FAULT-TOLERANCE MEASURES
FAULT ENVIRONMENT * SURVIVABILITY
* PERMANENT OCCURRENCE * RELIABILITY
* TRANSIENT OCCURRENCE
* TRANSIENT DURATION

FAULTARCS ENVIRONMENT ANALYTIC FAULT-
ENGINEERING MODELINGMODELINGTIO TOLERANCE

FART ATIO MEASURES

SYSTEM FAILURE
CRITERIA

" MISSED ITERATIONS YSTEMS-
* TIME LOST FA I LURE

CRITERIA

.SOFTWARE
STRUCTURE

SOFTWARE STRUCTURE RECOVERY

* SYNCHRONOUS FEATURES
* ASYNCHRONOUS

EXECUTIVE TEST
FEATURES

MODELING.
SIMULATION PARAMETERS

TEST FEATURES
* SELF- TEST PROGRAMS MODELING PARAMETERS
* ERROR DETECTION/ * PERMANENT COVERAGE

CORRECTION CODES * TRANSIENT LEAKAGE
* HARDWARE BUILT-INTEST * DETECTABILITY
* COMPARISON OF RESULTS * DIAGNOSTABILITY
" VOTING RECOVERY FEATURES RECOVERABILITY
* REASONABLENESS TESTS *ROLLAHEAD

*ROLLBACK
*MEMORY COPY
*RESTART

FIGURE 8.4-1 CAST SUMMARY DIAGRAM

8-5

THIS PAGE INTENTIONALLY LEFT BLANK

8-6

9.0 CONFIGURATION ANALYSES AND TRADE-OFF STUDIES

9.1 GENERAL

The analyses and trade-off studies described below are presented

to show the merits of the various reconfigurable computer system organization

concepts and the effects of using the various reliability enhancement tech-

niques. Before presenting these analyses and trade-offs it is appropriate

to discuss the ground rules governing these studies.

The general application class for the RCS studied is that of a

machine that provides at least the capability sufficient to handle an all-

digital, fly-by-wire control system for a passenger-carrying airplane. The

decision was made to consider a machine that has a memory capacity of 16K,

32-bit words.* The general class of aerospace computers appropriate for this

application all supply at least that capability in one ATR enclosure. It is

also possible to satisfy the requirements of the four function classes of

attitude and flight-path control, area nagivation, communications, and air-

traffic control (with the exception of display) defined in RATN 73, in just

over 12K words, thus leaving 4K for the executive. Hence, we are not faced

with the problem of excessive memory requirements.

The configurations presented are not oriented toward particular

individual aerospace computers, but rather toward classes of machines. Thus

the results should not be construed as favoring a particular design.

One difficulty encountered in evaluating a computer configuration is

the treatment of sensor and/or actuator failures. This difficulty arises be-

cause of the diversity of devices, the particular devices employed, the total

number of devices, and the individual device redundancies. Because of these

complexities, it was decided to include a seminal capability in CAST (princi-

pally in the simulator portion) to model I/O devices, and to set I/O device

failure rates to zero for these studies.

* Appendix B contains descriptions of four representative machines.

9-1

9.2 PARAMETERS USED FOR EVALUATION

Evaluation studies have been made for three classes of configurations:

a mostly-software configuration, a hardware-aided-software configuration and

a mostly-hardware configuration. The first set of configurations uses a 16K

memory and a computer with developed I/0 capabilities. The second and third

ones use only a 16K memory, but the computer has less I/0 capabilities.

When studying the influence of some parameters, we specify the con-

figuration and the varying parameters. Non-varying parameters are those indi-

cated in the table corresponding to the configuration.

Table 9.2-I is for mostly-software configurations. Table 9.2-II is

for hardware-aided-software configurations.

9.2.1 Mostly-Software Configurations (Table 9.2-I)

9.2.1.1 Physical Parameters

9.2.1.1.1 Design Decisions

The number of computers will always be specified. A software con-

figuration has no EEM. Each bus is supposed to be dedicated to a computer,

except otherwise specified.

Sensor redundancy is studied in Section 9.3.5.4. Otherwise, we

always separate them from our study.

9.2.1.1.2 Failure Characteristics

The failure rate (per million hours) comes from our evaluation of

a typical computer with high I/O capabilities*. The intercommunications module

failure rate is included into the CPU failure rate. This is due to the fact

that the results of such faults are bad outputs, as for CPU faults. The bus

has a typical failure rate of 6 per million hours.

Transient rates are supposed equal to permanent rates and the

transient duration is set to 1 ps. There is little data confirming these

assumptions. Section 9.3.6 shows a great sensitivity of the failure probabil-

ity to the transient rate and duration. This demonstrates the important need

of a better knowledge of the transient environment.

* A detailed failure-rate determination for one of the four representative
machines is presented in Appendix C.

9-2

TABLE 9.2-1 LIST OF INPUT PARAMETERS FOR MOSTLY SOFTWARE CONFIGURATIONS

1) PHYSICAL PAROAMETRS 3) PARAMIETERS AFFECTIG FAULT DETECTION AND ISOLATION IN THE COMPUTERS 5) TRANSIENT FAULT RECOVERY PARAMETERS

a) esign Decislfons a) Oetection Efficiency

Efficiency for Efficiency for l x ae Number
lsber of Cnoouters Nube. of Computers 3 or more 2 1 CPU Fault naory Fault Duration of Trials Time Limit In Use

Cedicated/Non Dedicated EM - Cparion 10 100% 0 (1) 30 .1 A 3000 s es(10)
be o EE BITE 51 5 51 Rollback 5 A4) Yes(

edlcat3e/on Dedicated Buses 0 Memory Copy 149999
mmber of EsCes Nemory BITE 451 45 45 .9999 2000 s3000 es9

ulner of External levices Per Bus 0 System Restart 1000 10 (10) 1000 s NA(14) (14) (0)
er of Spre Computers 0 b) Isolton Efflcency

(
g

)
uration

b) Failure Characteristics) PERMANENT FAULT RECOVERY ARAMETERS
Comparisons) (0) 0(10) Always done by switching off or ignoring the faulty computer

(3) p(3) (3) 1/(3) CPU BITE 51 5% once sthe p nent has been rcognized. If a spare Is available

CP (I) 450 NA
(
4) 40 1UMemory BITE 451 451

C (1) 450) 0 lsaNnossB ber of Computers 3 or more 2 1
*4mar (II) z2 9 ' 2O los (ETP)Memory () 200 A 200 s P) 98 Efficiency -1007

l

9 810 -OZ

EEd() (11) - NA(4) - Duration 0)
0) I

)

Buand External 4) PARLAMETES AFFECTING FAULT DETECTION AND ISOLATION IN THE EXTERIAL HARDREO 30
tevlces (IV) 6 1 A(4) O (

Impact of EE Fallure on Bus) 11)

KINer of Faults in the Bus NImber of EIs 3 or more 2 1

'Iv Detection Efficiency 1001'1
0

I.(A l 01
1)

INaber of Faults in Each Isolation Efficiency 100
O

-A. FOOTROTE
External Device

Y b) Bus and External Devices (1) Implicit paremeter when each EE/bus is dedicated to (B) This parameter Is valid only for permnent faults. Olagosis Is
one computer. no help with transient faults.

- Bus (2) The bus by Itself Is considered as an external device. (5) Isolation efficiency Is 100,. once the fault has been detected in seple.
2) ST E CHARACTERISTICS Number of Buses 3 or more 2 (3) A: permanent fault rate; : domannt fault rate. (10) Implicit parameters.n: transient fault rate; I/y: mon transient duratoa. (11) These parameters ae not appllcable with dedicated EN: In this case. faults

Sytection Efficiency 15001
l)

1000 0
(0)

(4) Non applicable when there is no spare. In th e EM re considered as eqol lent to CPU faults.SyihnoS/A i ync hronoos S
Scheduling Mehans Isolation Efficiency 100% N-A.1 (5) In this example. It Is ass that the four external (12) These parameters are 0 with a softwre TR since thiere Is no O.devices ave the sne fault rate. (13) Rolloheod Is used for 3 or mre corpters.Iteration Period 30 .s (6) Non applicable when synchronous schedllng. Rollack Is used for 2 or 1 couters.

inor Cycle urion E terl (7) These parameters re Implicit. Io ener, the 1001 (14) Ron apllicable.
or Cycle rat ber of Redundant Devices 3 or more 2 1 efficency s reached only after the whole ory (15) Rollhed is preceded by n imposed delay to allow the transen t to disstpate.major Ccle Our ohasf been ee mrced. i.e. aiter . ful mjor cycle.

(In ters of iterations) 100 Detection Efficiency 1001l IO10
)

0t1 Thus BITE fature ay speed up detecton. (16) Irrelent ohn EEN re dedicated.
Tine Beteen Co.risons S m Isolation Efficiency 100my

10
- LA.

Noaxi S Down Tim 30 s

Relative Size of Mi no
Cycle Progr .2

Interrupt Rate

9.2.1.2 Software Characteristics

Except in Section 9.3.7, these parameters are constand and valid

for all configurations.

We have a synchronous scheduling mechanism. The sample period is

typical of a fly-by-wire and is 30 ms long. The minor cycle duration which

represents the duration of the computation repeated every period is 5 milli-

seconds long. A major cycle is a hundred periods long, i.e., 3 seconds long.

Comparisons take place every 5 ms. We suppose that the maximum down time is

30 milliseconds long. This means that two consecutive iteration misses cause

a system failure.

9.2.1.3 Parameters Affecting Fault Tolerance in the Computers

Ways of evaluating these parameters are explained in Section 7.

Diagnosis efficiency is given by the manufacturer. The values listed here

are typical of a computer with high I/0 capabilities.

9.2.1.4 Parameters Affecting Fault Tolerance in the External Hardware

As stated in 9.2.1.1.1, there are no EEM and no external devices in

this configuration.

We suppose that the system needs two busses to perform satisfactorily.

This corresponds to an isolation efficiency of 0% when only two busses are
left.

9.2.1.5 Transient Fault Recovery Parameters

We suppose that 70% of a DRO memory transient fault affects the
content of a memory word, thus impairing rollahead and rollback efficiency.

A rollahead lasts .1 ms and a rollback 5 ms (time between comparison).

The memory copy has an efficacy of .9999. This corresponds to the
very low probability that the little routine bootstrapping the memory copy
recovery be itself destroyed. A memory copy lasts 2 seconds which roughly
corresponds to copying one word every 100 microseconds.

We allow for only 1 rollback. This means that if the rollback is
unsuccessful, adaptation to simplex is attempted. This is reasonable since
we supposed a transient duration of 1 microsecond.

9-4

The recurrence intervals are 3 seconds long, or one major cycle.

We suppose that during one major cycle the whole program memory is exercised.

Thus, it is unlikely to mistake a permanent for a transient. This would

happen if the permanent was redetected after more than 3 seconds, following

an unsuccessful recovery attempt.

9.2.1.6 Permanent Fault Recovery Parameters

The manufacturer gives the efficiency and duration of the diagnostic

routine.

9.2.1.7 Modeling Parameters

Simulation of the mostly-software configurations results in the

following modeling parameter values:

Parameter Value

91 0.87
X2 0.37

-4
z3,k4'"5 10 4

v2 0.94

w2 0.8

w3 ,w4 ,w5 1

A total of more than ten million missions were simulated during the simula-

tion runs performed on this contract. When the state of the configuration

consisted of three or more working computers there were no faults that

directly resulted in system failure.

9.2.2 Hardware-Aided-Software Configurations (Table 9.2-II)

Most of the considerations of Section 9.2.1 are still valid except

that now we consider a computer with minimum I/O capabilities.

9.2.2.1 Physical Parameters

9.2.2.1.1 Design Decisions

The EEM's and the busses in a HASW system may or may not be

dedicated.

9-5

9.2.2.1.2 Failure Characteristics

The computer has a lower failure rate than for a mostly-software

configuration. The failure rate of the EEMs partially makes the difference.

The complexity of an EEM should be less than the complexity of the inter-

communication module of the computer used in Section 9.2.1.

We suppose that in 60% of the cases, the loss of the EEM will cause

the loss of the bus since the EEM outputs wrong data.

9.2.2.2 Software Characteristics

See Section 9.2.1.2.

9.2.2.3 Parameters Affecting Fault Tolerance in the Computers

The main difference from the software case is that we assume a

machine with memory parity which raises the memory BITE efficiency to 80

percent.

9.2.2.4 Parameters Affecting Fault Tolerance in the External Hardware

In the case of non-dedicated EEMs, we assume that hardware config-

urations require two EEMs to be fault free before system failure. This

corresponds to an isolation efficiency of 0% when two EEMs are left.

9.2.2.5 Fault Recovery Parameters

The same remarks as in 9.2.1.5 and 9.2.1.6 are still valid.

9.2.2.6 Modeling Parameters

Simulation of the hardware-aided software configurations results

in the following modeling parameter values:

Parameter Value

1 0.87

R2 0.45

P32 4'"5 10- 4

v2 0.90

w2 0.90

w3 ,w4 ,w 5 1

9-6

TABLE 9.2-11 LIST OF INPUT PARAMETERS FOR HARDWARECONFIGURATIONS

1) PHYSICAL PAUOrNTES 3) PARAMETERS AFFECTING FAULT DITECTION AND ISLAT1IOM IN THE COMPUTERS 5) TRANSIENT FAULT RECOVERY PARAMETERS

a) It Decision a) Detection Effcncy Efficiency fr Efficiency fr lber
CPU Fault Memory Fault Durtion of Trials Tim Limit In Use

nmber of Couter N~b.er of Computers 3 or more 2 1 NA(14) 0Roboh o f Comoute's Ra ad 1 .Is I 1000 as Yes
{I O)

ticatditedj1o 8 EDOs Ca parisons
)

1001 100 0% Rollback - 0(10) .305 0)
Rollback 501 e nO

.berr of EONs CPU BITE 5y 5 5opy __
1

_ _ 2000 .s 14) 3001) ms .1
Dedicated/% Dedicated Buse Mry BITE S 80 1 .9999
1Uaber of r TseEo O B0

0.aer of Et.rrl devices Per Bus R Syten Restart 100(10) 100(10) 1000 s P(14) L(14)
Iander of SpOe Comauters b) Isolation Efficiency (9)

Humber of Computers 3 or more 2 6) PERMANENT FAULT RECOVERY PARAETERS
) Failure Characteristics C aro

n
100(10) (10) Always done by switching off or ignoring the faulty computer,

once the pemanent hs been recognized. If a spare Is &vailabit,
1(3)) (3) C PU BITE S -t 5S 1t Is slitched n.

I~ery BITE BO 80s

CPU (I) 200 NA 200 ls ii hmber of Computers 3 or oare 2

MeNory (11) 250 I 250 l Tn I 97.5 11 Efficiency I 10- 0 S
)

E 97.51

E I(12) (II) 100 NA' 100 los Oraton 00 d1 as ()

U 4o ()) 0 4) PARAMETERS AFFECTING FAULT DETECTION AND ISOLATION IN THE EXTERNAL HARD 3IBE

CvIces (IV) (4) EDI
lmpact of EEM Failure on But 6

nnber of FauOts in the Bus I I nber of ENs 3 or more 2 1

'IV Detection Efficiency 100%
(10

) 100(10) 00 I

Fat in Ec FOOTOTES
u er of faults in ch. Isolation Efficency 1001"0 0 -Txteral Device

IV b) (1) Implicit paemeter when each EEN/bus Is dedicated to (8) This prarmeter s valid omly for permanent faults. Diagnosis Is
I Buo and Eetral Delces one computer. no help with transient faults.

- Bus (2) The bus by Itself Is considered as an externwl device. (9) Isolation efficiency Is 100. once the fault his been detected In stplos.

2) F E CHARACTESTIC er of Bse or o (3) 1: pemnent fault rate; t : dormant fault rate. (10) Implicit parameters.
2) ber of : transient fault rate; 1/y: mean transient duration. (11) These parameters are not applicable with dedicated ED: 1. this case, flts.

Detection Efficiency 100
(10)

I1000
l

0
)

0%(10) (4) ion applicable when there IS no spare. In the EEN are considered as eqivalent to CPU faults.
S rolnu l yhrooa Isolation Efficiency 1003

i l
N-A'(14) (5) In this e.xample. It Is ssoed toot the four external (12) These paroseters a 0 with softwre IM since ther Is no EI .

devices have the same flult rae. (13) Rollahead s used fwr or r ore computers.
Iteration Period 30 I5 (6) NMn applicable din synchronous scheduling. Rollback is used for 2 or computers.

- for Each External Device () hese parameters are lplicit. lkAever. the 10 (14) Non applicable.
inor Cycle Erat s M er of Redundant Devices 3 or ore 2 1 efic ie cy is reched only after the lole y (1S) Rollheod is preceded by a posed delay to allw the trn t to dss ta
Kl~r Cycle rtn has been exercised, i.. after a full mjor cycle.

In tr of Lrations) 100 Detection Efficiency 100 0 000 0
t

Thus BIT fetor my speed up drtectlon. (16) Irrelevant sWen Ei are dedicated.

TIe Detween Comp rlsons $ S Isolation Efficiency 10
)

* LA

I.u Doem Tim 30 0s

Relative Sie. of ino .2
Cycle PogrPr

Interrupt Stae

A total of more than ten million missions were simulated during the simula-
tion runs performed on this contract. When the state of the configuration
consisted of three or more working computers, there were no faults that
directly resulted in system failure.

9.2.3 Mostly-Hardware Configurations

These configurations use the same computers as those described in
Section 9.2.2. Thus, most of the parameters are the same. However, the
complexity of the EEM increases and the failure rate of the EEMs has been
estimated in this case to be 200 per million hours.

9-8

9.3 GENERATION OF RESULTS

9.3.1 Assessed Configurations

The configurations assessed are mostly-software, hardware-aided-
software and mostly-hardware with 3, 4, and 5 computers plus a duplex
configuration.

The computers are all adaptive in that whenever two computers are
remaining, the system enters a residual duplex mode as described in Section
2.2.2.

Hardware configurations require two EEMs to be fault free before
system failure.

Two busses are required to be fault free for hardware and software
configurations. The case of adaptation of busses from duplex to simplex when
detection coding and I/0 wrap is used is also considered.

9.3.1.1 quintuplex Configurations

Table 9.3-I is a summary of quintuplex configuration assessments.
The entries are ordered in increasing 10-hour failure probability. Under
"configuration type," HASW represents hardware-aided-software, MSW represents

mostly-software, and MHW represents mostly-hardware. The number under
"computers," "EEMs," and "busses" indicate the redundancy of that device.
The two dedication columns indicate whether members of the neighboring
columns are dedicated or not (DED is dedicated while N/D is non-dedicated).
The table represents 14 different configurations.

Figures 9.3-1 and 9.3-2 are plots of the failure probabilities
versus mission time and extended mission time, respectively, for the con-
figurations in Table 9.3-I. The curves are identified by numbers correspond-
ing to the "number" column of Table 9.3-I.

Figure 9.3-1 shows failure probability as the ordinate on a
logarithmic scale between 10-12 and 10-5. The abscissa is an equal increment
scale of mission time from 1 to 25 hours. Figure 9.3-2 is on log-log scale
with failure probability shown from 10-10 to 10-2 and mission time from 1
to 1000 hours.

9-9

10-6 14

13
;; 11,12

/ ' f1 0,. 9,10
.8

10- 7 710

-4
.. 5

-3
1,2

10-

10

10-12

10-13
1 3 5 7 9 11 13 15 17 19 21 23 25

Mission Time (Hours)

FIGURE 9.3-1 QUINTUPLEX FAILURE PROBABILITY VERSUS MISSION TIME
FOR NON-ADAPTIVE BUSSES

9-10

TABLE 9.3-I SUMMARY OF QUINTUPLEX CONFIGURATION ASSESSMENTS

10 HOUR
CONFIGURATION FAILURENUMBER TYPE COMPUTERS DEDICATION EEMs DEDICATION BUSSES PROBABILITY

1 HASW 5 N/D 5 N/D 5 6.65(10) -10

2 HASW 5 N/D 5 DED 5 6.71(10) -10

3 HASW 5 N/D 5 N/D 4 1.37(10)-9

4 HASW : 5 DED 5 N/D 5 1.50(10)-9

5 MHW 5 N/D 5 N/D 4 1.59(10) -9

6 HASW 5 DED 5 DED 4 2.20(10)-9

7 MHW 5 DED 5 DED or N/D 5 2.90(10)-9

8 MHW 5 DED 5 N/D 4 3.60(10)-9

9 MSW 5 N/D - - 5 4.90(10) -9

10 MSW 5 DED - - 5 5.06(10)-9

11 HASW 5 N/D 4 N/D 5 2.02(10)-8

12 HASW 5 N/D 4 N/D 4 2.09(10) -8

13 HASW 5 N/D 4 DED 4 2.23(10)-8

14 HASW 5 N/D 4 N/D 3 9.60(10)-7

Mission Time (Hours)
10-1 100 100 .

10

'14

i 10

-6

... ... i I i 1 3 ! . : : I i .

10 .

. . ' I: : ::::: . j.

1. VERSUS MISSION TIME FOR

. ... I : . . .I / .. .

9-. 12 .o

i . _i- i I,-L. -

.i-. ".:._:.:.ii....QUINTUPLEX FAILURE PROBABILITY

io 10 i I -

! I .. .

Figure 9.3-3 shows the effect of adaptive busses in quintuplex con-

figurations. Adaptive busses are achieved by error-detecting coding on the

busses and the use of I/O wrap. When down to duplex busses, codes on I/O

wrap can identify a faulty bus. All curves are HASW. Curves 1 and 2 repre-

sent dedicated EEMs with either 3 or 4 busses. Curve 3 represents a dedi-

cated EEM with 5 busses. Curves 4, 5, and 6 represent 5 non-dedicated EEMs

with 3 busses, 4 busses, and 5 busses, respectively.

9.3.1.2 Quadruplex Configurations

Table 9.3-II is a summary of the quadruplex configurations. The

entries are ordered by increasing failure probability. An explanation of

the columns of the table is given in Section 9.3.1.1 for quintuplex

configurations.

Figures 9.3-4 and 9.3-5 are plots of the failure probabilities

versus mission time and extended mission time, respectively, for the con-

figurations in Table 9.3-II. The curves are identified by the numbers in

the "number" column of Table 9.3-II.

Figure 9.3-6 shows the effect of adaptive busses in quadruplex

configurations. All curves are HASW. Curves 1 and 3 represent dedicated

EEMs with 3 and 4 busses, respectively. Curves 2 and 4 represent non-dedicated

EEMs with 3 and 4 busses, respectively.

9.3.1.3 Triplex Configurations

Table 9.3-III is a summary of the triplex configurations. Duplex

and TMR configurations are shown as well. The entries are ordered in in-

creasing failure probability. An explanation of the columns of the table

is given in Section 9.3.1.1. The failure probability for configuration

number 6, the MSW with dedicated busses, is verified by simulation. Some

entries represent more than one configuration with the same failure

probability.

Figures 9.3-7 and 9.3-8 are plots of the failure probabilities

versus mission time and extended mission time, respectively, for the config-

urations listed in Table 9.3-III with the exception of TMR and duplex. TMR

and duplex curves will be shown in Section 9.3.2. The curves are identified

by the number in the "number" column of Table 9.3-III.

9-13

10 , 1

-7

-o

10

- -9

0

10-12

10-13

1 3 9 13 15 17 19 21 23 25

Mission Time (Hours)

FIGURE 9.3-3 QUINTUPLEX FAILURE PROBABILITY VERSUS MISSION TIME

FOR ADAPTIVE BUSSES
9-14

TABLE 9.3-II SUMMARY OF QUADRUPLEX CONFIGURATION ASSESSMENTS

10 HOUR
CONFIGURATION FAILURE

NUMBER TYPE COMPUTERS DEDICATION EEMs DEDICATION BUSSES PROBABILITY

1 HASW 4 N/D 5 N/D 4 9.67(10) -8

2 HASW 4 N/D 4 DED or N/D 4 1.08(10) -7

3 MHW 4 N/D 4 DED or N/D 4 1.45(10) -7

4 HASW 4 DED 4 DED or N/D 4 1.71(10) -7

5 MHW 4 DED 4 DED or N/D 4 2.75(10)-7

6 MSW 4 N/D - - 4 4.56(10) -7

c-7 MSW 4 DED - 4 4.68(10) -7

8 HASW 4 N/D 5 N/D 4 8.76(10)-7

9 HASW 4 N/D 4 N/D 4 8.87(10) -7

10 HASW 4 DED 4 N/D 3 9.49(10) -7

11 HASW 4 N/D 3 DED 3 6.48(10)-6

12 HASW 4 N/D 3 N/D 3 6.74(10)-6

10- 4

10
-611,1

10- 5 106,7
5
4

10-6

*-7

-810-9

10-1

10-11 3 5 7 9 11 13 15 17 19 21 23 25

Mission Time (Hours)

FIGURE 9.3-4 QUADRUPLEX FAILURE PROBABILITY VERSUS MISSION TIME
FOR NON-ADAPTIVE BUSSES

9-16

rditt
I0 I

Mission Time (Hours)
-1o 10 100 100010/

2ii

-310

I 4

-5

' I I I . i

I /I I 11.'7"

10

..i

- i i

/ jIS -,il /1-
8 :- -U -FAi :-" :OAI

S - 1

10

VERSUS EXTENDED MISSION TIME. .. '

- r:; i: :

-9

10 - I

I 0 :: .i : :. .

I"_7 -- -: T r - -- -

" 10 9:-

'-.iFOR NON-ADAPTIVE BUSSES

1: : ii ,

9-17

10-

10-6

10- 7

-8

10

*-

0 -9

, 1 0 - - - -- - - -- --.

LL-

5 9 13 17 21 25

Mission Time (Hours)

FIGURE 9.3-6 QUADRUPLEX FAILURE PROBABILITY VERSUS MISSION TIME
FOR ADAPTIVE BUSSES

9-18

TABLE 9.3-III .SUMMARY OF TRIPLEX CONFIGURATION ASSESSMENTS

10 HOUR

CONFIGURATION FAILURE

NUMBER TYPE COMPUTERS DEDICATION EEMs DEDICATION BUSSES PROBABILITY

1 HASW 3 N/D 4 N/D or DED 3 or 4 1.48(10) -5

2 HASW 3 N/D 3 N/D or DED 3 1.86(10)-5

3 HASW 3 DED 3 N/D or DED 3 2.05(10)-5

4 MHW 3 N/D 3 N/D or DED 3 2.71(10) - 5

-5
5 MHW 3 DED 3 N/D or DED 3 2.84(10)

6 MSW 3 N/D - 3 or 4 4.4(10) -5

7 MSW 3 DED 3 4.5(10) - 5

8 HASW 3 N/D 3 N/D 3 1.3(10) - 4

Non/Adaptive"

9 Duplex 2 6(10) - 4

10-'

10

-3----> 10

-5

4
r-10 -

-10

10-

10
- 7

1 3 5 7 9 11 13 15 17 19 21 23 25
Mission Time (Hours)

FIGURE 9.3-7 TRIPLEX FAILURE PROBABILITY VERSUS MISSION TIME
FOR NON-ADAPTIVE BUSSES

9-20

Mission Time (Hours)
10 100 1000

I i , .

2 6 7

" h ; i . . I I : . /

10 i
L i " : 7 i/ r. I' .

10-3

104 21

S. :....: -- i-: .-- -:::

-6 7 110- ,ERU::EXE I .

.. . . . - 2.... .

o 2- 4

S -

io -8 ,. :, i ... I .: ,

In the triplex case, adding adaptive busses does not significantly

decrease the failure probability, since most system failures are in the

computers and EEMs.

9.3.2 Effect of Redundancy

Figure 9.3-9 shows that added redundancy yields a large improve-

ment in failure probability. Here failure probability is shown versus

extended mission time. The curves represent configurations as shown below:

1. Quintuplex with five EEMs and four busses.

2. Quintuplex with four EEMs and four busses.

3. Quadruplex with five EEMs and four busses.

4. Quadruplex with four EEMs and four busses.

5. Triplex with four EEMs and three busses.

6. Triplex with three EEMs and three busses.

7. TMR with three EEMs and three busses.

8. Duplex

Computers, EEMs, and busses are non-dedicated.

The results are summarized as shown below:

10 Hour
Failure Probability
Improvement Ratio

Configuration Over Simplex

Duplex 4.3

TMR 24

Triplex 160

Quadruplex 2.4(10)4

Quintuplex (4EEM) 1.2(10)5

Quintuplex (5EEM) 1.7(10)6

It is interesting that each increment of redundancy gives about

two orders of magnitude improvement in failure probability.

9-22

Mission Time (Hours)

1 10 100 1000

..:.

X i ii :i i " I

.. . . I : : Iiu i - • :

10-1

..... . .

10

- : :-: , . -: .- - :-

-310

10- 4 47.

10-4

.10... ..

0-6

--,:4 --------i- -- - . .

PROBABILITY VERSUS EXTENDED

-7 MISSION TIME FOR 5, 4, 3
10

108

-9 1i r 1 LL,- 1

106 . :

-8

-ir: - . i . :

9-23

9.3.3 Effect of Non-Unity Recoverability

A recoverability (wi) of 1 has been assumed in the generated

results. Errors in recovery algorithms or single point failures could cause

a recoverability of less than 1.

Figure 9.3-10 shows how recoverability can affect failure proba-

bility in a plot over an extended mission time. The curves are identified

by numbers on the figure as follows:

1. Triplex with wi = .99

2. Quadruplex with wi = .99

3. Quintuplex with w. = .99

4. Triplex with wi = .999

5. Quadruplex with wi = .999

6. Quintuplex with wi = .999

7. Triplex with wi = .9999

8. Quadruplex with wi = .9999

9. Quintuplex with wi = .9999

10. Triplex with wi = 1

11. Quadruplex with wi = .99999

12. Quintuplex with wi = .99999

13. Quadruplex with wi = .999999

14. Quintuplex with w. = .999999
15. Quadruplex with w i = .9999999

16. Quintuplex with wi = .9999999

where i = 3, 4, 5. Here we exclude busses and dedicate the EEMs.

The figure shows that short mission times are affected more by non-

unity recoverability. Also the survivability gained by added redundancy can

be overshadowed by recoverability. When recoverability is the greatest contrib-

utor to failure, then redundancy becomes a disadvantage as can be seen from

the initial mission hours of curves 1, 2 and 3.

9-24

Mission Time (Hours)

1 10 100 1000
10- 1 ii :

I , .

10 "1

774

10- 3 7 --

12 -- --..
10

-77-

1V4-

i. . .

61 .. - - -- -

j-M

i- FIGURE 9.3-10

10

13- * 9....

-4 ; 1i 1- - 41

10

9-25

.4.: --;--.v- " -

9-25

9.3.4 Effects of Adaptivity

Adaptive configurations can adjust to a new fault tolerant scheme

when units have been recorded as faulty. More adaptable systems admit more

faults than less adaptable systems, increasing their discrete fault tolerance.

(Discrete fault tolerance also depends on the level of redundancy.) Adapta-

bility allows an improvement in failure probability while non-adaptability

causes a degradation at the same level of redundancy.

Table 9 .3-IV summarizes the effects of adaptabi+ lity Quintuplx,

quadruplex, and triplex imply adaptive cases where voting in the prime method

of fault detection and diagnosis with three or more fault free computers.

A residual duplex mode is entered when two computers remain. Two out of N

and TMR configurations have no residual duplex, while QMR is a non-adaptive

3 out of 5 vote.

It is interesting that QMR has five computers and a greater failure

probability than the four computer configurations. This is because it has

a discrete fault tolerance no greater than quadruplex and more computers to

have faults.

Figure 9.3-11 shows the effects of adaptivity on failure probability

over extended mission times.

9.3.5 Effects of RETs

The method to study the RETs consists in identifying the input

parameters which are affected by the introduction of each RET. Then simula-

tion runs are made with parameters representing the presence and the absence

of these RETs. When possible, an alternative method consists in computing

the impact of modifying one parameter in one run, thus avoiding one simulation

run. From these runs, we get different sets of parameters which are used for

analytical modeling.

9.3.5.1 DRO Versus NDRO

Three cases of hardware aided software NMR have been studied. The

three systems are identical except for the memory and one recovery algorithm.

The first one has DRO memory and no memory copy. This is why many transients

in multiplex cannot be corrected. The second one does include a memory copy.

9-26

TABLE 9.3-IV SUMMARY OF THE EFFECTS OF ADAPTABILITY

Failure Probability
10 Hour Degradation Ratio
Failure (With Respect Discrete

Configuration Probability To The Adaptive Case) Fault Tolerance

Quintuplex 1(10) - 9 1 4

5 2 out of 5 6(10)lO 9 6 3
Computers 6

o QMR (3 out of 5) 1.5(10) 6 1500 2
r,

-4

4 Quadruplex 1,4(10) - 7 1 3

Computers 2 out of 4 7(10) - 7 5 2

3 Triplex 2(10) - 5 1 2

Computers TMR 1.3(1)-4 6.5 1

Mission Time (Hours)

-110 100 1000
1 0 r r r...........

impi ex

-2
10 ...

10- 3
10

Du... .R 9e ...

4le- *ri le...
.-.-- ~ - i : :-::

l - 1 0- , ----

T-7 Tr x i- "- -i L.. "

10M i i-6o i r

MR 2 -- of 5

7 FIGURE 9.3-11
10_

out of 4 ------- . EFFECT OF

.-.... .-ADAPTABILITY ON FAILURE
-~--i----.---. -.i i:.:.i.., _ .. PROBABILITY FOR EXTENDED

.. MISSION TIMES
10- 8 -:-L __i l

-9 _ .
1 10 100 1000

Mission Time (Hours)
9-28

Most transients are corrected and the leakage is very low. Finally the third

system has a NDRO memory, and of course, no memory copy. We assume that the
technology involved in NDRO memories implies slightly higher failure rate and
that transients changing a memory content accounts for 1% of all memory tran-
sient. Furthermore runs are made with 2 different values for the transient
duration: 1 microsecond and 1 mill-isecond. Results of the simulation are
indicated in Table 9.3-V.

Fault DRO. (A=250 10-6) DRO (x=250 10-6) NDRO (x=300 10-6)
Duration No Memory Copy Memory Copy No Memory Copy

1 12 13=14= 5 1 13=14 5 11 2 345

11s .87 .33 .33 .87 .33 10-4 .51 10-2 10-2

Ims .87 .45 .45 .87 .45 10-4 .51 .20 .20

TABLE 9.3-V LEAKAGE COEFFICIENTS

It appears that using a NDRO improves dramatically the leakages
in duplex. and simplex. However it decreases.slightly the leakage in multi-
plex (due to the absence of memory copy) and also increases the failure rate
of the memory. Thus, we need using the analytical model to draw more precise
conclusions.

Figures 9.3-12 - 9.3-14 illustrate the results obtained for duplex,.
triplex, quadruplex and quintuplex. These curves plot the 10-hour failure
probability versus the transient fault rate for different types of memory
and various recovery algorithms and fault durations. In this section we are
interested only in the influence of the type of memory. We examine the curves
whose last digits are either 6 or 7. It appears that an NDRO memory improves
the system survivability in most of the cases. It does not if the transient
rate is very low. This may also be verified by comparing curves 2 and 4. This

9-29

HASW QUINTUPLEX
-3

10. . DRO; No Transient
Coverage

; _II 2. DRO; No Memory
I 2 Copy Transient

4 1 Duration, 1 ms
10

3. DRO; No Memory
-- Copy Transient

i Duration, 1 ps

10-- 4. NDRO; Transient
-;navtinn 1 mc

3 5. DRO; Memory Copy
SI Transient

- Duration, 1 ms
S10 - v T C 4 6. DRO; Memory Copy

i4 Transient
S-' Duration, 1 ps

-0_7 I 7. NDRO; Transient
10 --Duration, 1 /s

Ti-, jiT For DRO memory, com-
puter permanent fault-

- rate is 550 failures
10-8 per million hours.... - 5

r i------ 6~-~
6. For NDRO memory, com-

".. - -7 puter permanent fault-
- rate is 600 failures

-109 - H per million hours.
10 2 00 : : I

. . . .- 1 t1 4 4 1- i

-10!
0 2000 4000• 6000 8000 10000 12000

Transient Fault-Rate (Failures per 106 Hours)

FIGURE 9.3-12 10-HOUR FAILURE PROBABILITY VERSUS TRANSIENT

FAULT RATE

9-30

HASW QUINTUPLEX

10-4 2 4 1. DRO; No Transient

S. :'' Coverage

..... 2. DRO; No Memory
.:: .. "Copy Transient

...... Duration, 1 ms

S i. I i - Copy Transient
+it Duration, 1 ps

I

S4 ' . NDRO; Transient
... 2. Duration, 1 ms

1 -6 I6 5. DRO; Memory Copy:- ' TransieTransient

". . Duration, 1 ms

- 6. DRO; Memory Copy
- -- _. NDRO;' TTransient

- Duration, 1 ps

--7.10 7. NDRO; Transient
l Duration, I ps

8
10 .4- .. -

10 i

100 1000 10,000 100,000 1,000,000

Transient Fault-Rate (Failures Per 106 Hours)

FIGURE 9.3-13 107HOUR FAILURE PROBABILITY VERSUS TRANSIENT

FAULT RATE

9-31

FI U E . - i-! 1"-T OU .: I UR PR-- :.T -

!]-.-2--/-:::)~~~AUL .i:.. :_.:.. ,...

::: / : , ...: ;i! ! : !!. l:.i..i..:_.. - 31 .i !,::..!:;l.. i

is due to the fact that the main advantage of NDRO is to enhance the proba-
fility of recovery from a transient fault in duplex. It can also be noted that

the improvement is more dramatic in triplex than in quintuplex because a

triplex system has a higher probability todegrade to duplex. The other

curves are described in Section 9.3.6.

9.3.5.2 Effects of BITE

Built-in-test equipments permit detection and isolation of a

fault in a computer without using such devices as voters and comparators nor
a diagnosis routine.

Even though it may decrease slightly the time between occurrence of
a fault and its detection, it has no measurable effect in a multiplex system.

In duplex BITE are essential. They make possible to isolate many
transient faults which could not be isolated through diagnosis, since the
transient would have disappeared when the diagnosis is run (improvement of
diagnostibility v2)'

In simplex BITE are also essential, since they provide the only way
to detect transients (improvement of leakage 11).

Effects of BITE are given for two software adaptive TMR configura-
tions. We see that improving duplex and simplex does improve an adaptive TMR.
This improvement would be less significant with quadruplex and especially
quintuplex since it is unlikely that such configurations degrades down to a
simplex. Table 9.3-VI shows the improvements due to BITE for a software
adaptive TMR. Similar results could be obtained with a hardware configuration.

v 1-11 Failure Probability
2 1 After 100 Hours

BITE 90% 8% 19x10 -4

No BITE 71% 0% 55x10-4

TABLE 9.3-VI EFFECTS OF BITE

9-32.

HASW DUPLEX, TMR AND 4-MR

77- 7,-, The first digit on each

Si I-- - curve refers to the
_ i number of computers.

.] The second digit refers
-10 to implementation de-

10 i tails and fault dura-
7!- Tit 42 . tion as explained below.

-":-- t- -!:1 2.1

, I1. DRO; No Transient
10-2 i 7 2.3 Coverage

- --- 3.1
: " 2. DRO; No Memory

10- 3.3" 3. DRO; No Memory4.1 *Copy Transient

3. 4 Duration, 1 gs

-g t..... V - 14' 3-5 4. NDRO; Transient

L+ - -i 2.7

"ul3.7 Duration, 1 ms

4 1 'opy Transient" TMR. 37 Duration, 1 s
10 6. DRO; Memory Copy

T [-sn - Transient
. • • Duration, 1 ps

4 1- ' P V

O 7. NDRO; Transient

0 3. DRO; Memory Copy9000
Transient Fault-Rate (Failures Per 6 Hours)Transient

•Duration, 1 -

FIGURE .9.3-14 1-HOUR FAILURE PROBABILITY VERSUS TRANSIENT

FAULT RATE .6

" 9-33
9-33

9.3.5.3 Effects of Diagnostics

Diagnostics are not useful in multiplex since voting provides isola-
tion of a fault. In duplex, they are essential since they provide isolation
of a fault, once it has been detected through comparison. In simplex, they can
be used if they are run periodically. However they will catch very few tran-
sients. Their only usefulness is that they can provide a warning that the
system has failed.

Effects of diagnostics are assessed by simulating a configuration
with diagnostics. Counting the number of times a diagnostic routine is called
and dividing by 2 provides the number of failures due to the absence of
diagnostics. Table 9.3-VII gives the results for two adaptive softwareN-plex
configurations.

Quadruplex Triplex

Diagnostibility
F(100) F(10) F(100) v2

Diagnostics 18x10-5 15x10-6 19x10 -4 90%

No Diagnostics 56x10-5 58x10-6 44x10-4 61%
(But BITE are
present)

TABLE 9.3-VII FAILURE PROBABILITIES AFTER 10 AND 100 HOURS FOR
QUADRUPLEX AND TRIPLEX WITH AND WITHOUT DIAGNOSTICS

9.3.5.4 Codes and I/O Wraparound

In order to include error correcting/detecting codes in the candi-
date computers, extensive hardware modification is required. This is not
within the realm of "off-the-shelf computers" and will not be considered here.
Single error detecting codes in memory (parity) are built into some of the
candidate computers and are considered as a part of BITE. Codes and I/O wrap-
around checks are useful for error detection and fault masking in the I/O
system.

9-34

Single error correcting/double error detecting codes allows one

fault to occur before the hardware becomes inoperative. The reliability

model to be used for the area covered by the code is

R = e-AT (l+cXT)

where X= failure rate of the bus and the code generating and decoding

circuitry.

In the configurations we have assessed three or more redundant

serial busses were postulated. Section 9.3.1 showed the effect of adding

detecting codes and I/0 wrap to the bus (allows adaptability). Error

correcting codes on serial busses are not practical because bus faults will

probably affect more than one bit.

To show the effect of error correcting codes on busses, we use a

four-bit, byte-serial bus as a strawman. We compare a simplex error-

correcting bus with a duplex error-detecting bus. The simplex bus requires

7 wires plus coding/decoding circuitry which yields a failure rate of 7 x 6

failures per 106 hours = 42. The duplex bus requires 4 wires per bus plus

detection/diagnosis circuitry for a failure rate of 4 x 6 failures per 106

hours = 24 per bus.

Figure 9.3-15 shows coded simplex versus duplex for various values

of coverage. Coded simplex is slightly better with non-unity coverage because

of the lower total failure rate, A TMR bus is included with duplex coverage

values of 0 and .9 with X= 56.

9.3.5.5 Reasonableness Tests and Sensor Redundancy Management

Sensors may be either self-checking error-indicating or non self-

checking. Multiple non-checking sensors require at least three to resolve a

faulty sensor when comparison is used for error detection. Selection of the

median sensor value is a good method of generating a common input for all

computers. Median selection masks the effect of a sensor that has deviated

by a large amount from the true value while averaging weighs the effect of all

sensors equally. Any sensor that deviates more than a fixed amount from the

median is indicated as faulty. Deferring final judgment on whether a sensor

9-35

has permanently failed until fault indications appear two or more times in

a row reduces the number of sensor transients recorded as permanent.

Reasonableness tests can provide a method of isolating a faulty

sensor when one or two copies are in use. The tests check if the difference

in successive sensor values do not exceed a specified limit. In some cases,

a total system analysis is required to resolve a faulty sensor.

Truncation of least significant bits is not a good method of resolv-

ing sensor values. It is possible for two binary values to differ by one

arithmetically and to have no bit positions that are equal.

In order to provide a feeling of the usefulness of the reasonable-

ness tests, the following simulation runs have been made. The system is a
software TMR (Table 9.2-I) where we include a sensor whose failure rate is

650 faults per mission hours (equal to the computer failure rate). In the
first run we suppose there is no way of deciding which sensor is good if there

are only two of them working and they disagree. In the second run, in 80% of
the cases, the system is able to decide which sensor is good. Finally, we

also compare with results obtained when sensors are supposed to be perfect.
The results are listed in Table 9.3-VIII.

TABLE 9.3-VIII EFFECTS OF REASONABLENESS TESTS

Failure Probability
After 10 Hours

Sensor No Reasonableness Test 100x10 -6

Sensor Reasonableness Test 42x10-6

Perfect Sensors 15xlO-6

A sensor may be dedicated to one input bus or be available to all
busses. If sensors are dedicated to busses and busses to computers, then the
loss of one computer causes the loss of all sensors on the bus associated
with the computer. The less dedication there is, the better it is, as can

9-36

10-10 ,

10- 4 le . c=.9

/TS,: mpl x

10-5 c=.99

pI c=

:MR c=.999

10 1

c I =

1010 I

10-8 / . •

FIGURE 9.3-15 COMPARISON OF CODED SIMPLEX, DUPLEX AND TMR BUSSES

9-37

be seen from Table 9.3-IX. We have made two simulation runs. In the first

run, sensors are dedicated to busses and busses to computers. In the second

run, sensors are non dedicated. In both cases, reasonableness are present.

TABLE 9.3-IX EFFECTS OF NON-DEDICATED SENSORS

Failure Probability
After 10 Hours

Dedicated Sensors 94x10-6

Non-Dedicated Sensors 42x10-6

Perfect Sensors 15x10-6

9.3.5.6 Voters, Adaptive Voters, and Comparators

Voters have the capability of polling the output of N elements

and "voting" a consensus output when M elements agree (N M). Adaptive

voters differ from voters in that N and M may vary during a mission.

Adaptive voters give rise to adaptive configurations while voters are used

for "NMR" configurations. One type of voter is required for configurations

of three or more computers in either a hardware or software implementation.

A variation in the type of voter used implies a change of configuration.

Voting is evaluated in Section 9.3.4.

Comparators are used in duplex configurations and may have either

a hardware or software implementation. Hardware comparators may or may not

have a self-checking feature. The self-checking feature signals the computers

when the comparator fails and allows a switch to simplex.

If self-checking comparators fail, the duplex system will recognize
this failure and degrade to simplex since error detection by comparison is

no longer possible.

If non-self-checking comparators fail, an erroneous disgareement
signal will be generated. A rollback will be attempted and will apparently
fail. Diagnosis will be inconclusive, since no computer is faulty. The

9-38

monitor will select a computer for simplex by a coin flip, and of course,

will select a fault free one. Therefore, self-checking comparators only allow

the system to recognize a comparator failure without going through the trauma

of an inconclusive diagnosis.

9.3.5.7 Dedicated/Non-Dedicated I/0 Units

The impact of dedicating the not dedicating I/0 units is shown in

Section 9.3.1. Several configurations where computers, EEM's, and I/0 busses

are and are not dedicated are evaluated. The results show that it is best

to not dedicate computers to EEM's, but failure probability improvement is

achieved by dedicating EEM's to busses.

9.3.5.8 Independent Hardware Monitor

The independent hardware monitor (IHM) may have one of three

purposes:

1. As a laboratory tool to test system performance,

2. As a fault recorder to aid in ground maintenance, and

3. As an error checking device to signal a system error.

The first two purposes, although useful, are not in the realm of fault

tolerance. It is important, however, that the system has no faults prior

to a mission.

In fault-tolerant computer design, the designer identifies all the

possible faults that can occur in the system and labels it the fault set.

A fault-tolerant design then protects the system from faults within the fault

set. Overlooked faults and hardware and software design errors that have not

been uncovered during checkout can cause a system failure. These causes of

system failure cannot be exactly quantified because they would be corrected

if they are identified. For modeling purposes, the probability of such an

event is taken to be much smaller than the overall failure probability during

the mission.

The IHM can detect some system faults by reasonableness tests. The

tests would verify that the difference between the present outputs and the

previous outputs does not exceed a specified limit. The effectiveness of the

9-39

tests depends on the application, and we estimate them to be between 25 and

75 percent effective. The IHM can also serve as a limit detector on the

actuators.

If the failure is due to a software error, redundant algorithms

could be used for critical programs. The only recourse from a failure of the

alternate computations is a system restart.

9.3.6 Effects of Transients

In order to enhance the reliability of the system, transient

recovery should be provided. If not, transient faults would have the same
effect as permanent and would cause the loss of a computer. Furthermore,

transients are very difficult to diagnose and thus lack of provision for
transient recovery in duplex would decrease the diagnostibility.

Once transient recovery has been decided, the algorithms have still
to be chosen. Here, it will be seen that the distribution and the duration
of transients are important and should be known if best results are to
be obtained.

9.3.6.1 Introduction of Transient Recovery

In Figures 9.3-12 - 9.3-14, curves whose last digit is a 1 repre-
sent the survivability of HASW system without any kind of transient recovery
(except adaptability). It can readily be seen that introducing a transient
recovery algorithm (even a bad one) always improves dramatically the surviv-
ability. This improvement is even more than it appears on these plots since
the curves without transient recovery do not take into account the decrease
in duplex diagnostibility.

9.3.6.2 Transient Recovery Algorithms

9.3.6.2.1 Duplex

The recovery procedure in duplex is the rollback. On Figure 9.3-14
curves 2.2 (interrupted by the crash of the system where the plotting was
done), 2.3 and 2.7 illustrate improvement due to rollback. Curve 2.7
corresponds to a NDRO memory where rollback is very efficient since transients
causing program memory damage are very rare.

9-40

9.3.6.2.2 Multiplex

For the cases with 3 or more computers, rollback is repJaced by

rollahead. Thus computation is not interrupted. Comparing, for example,

curves 3.1 and 3.2 or 3.3 of Figure 9.3-14 shows the improvement due to

introduction of recovery algorithm in an adaptive TMR. However, rollahead

does not correct those transients which damage the memory. That is why the

memory copy is introduced (curves 3.5 and 3.6). Another solution consists

in replacing the DRO memory by a NDRO memory (curve 3.7).

9.3.6.3 Influence of Transient Duration

The plots of Figures 9.3-12 - 9.3-14 illustrate what happens

when the average transient duration is 1 micro- and 1 millisecond. Results

are always worse in the case of a long transient. This is due to the fact

that the recovery begins when the transient is still active, thus causing the

recovery not to be successful. In order to avoid that, a delay can be intro-

duced between detection and start of recovery (see Section 5.4.7).

9.3.6.4 Influence of Bursts of Transients

Up to now, it was always assumed that transients arrived isolated

in time, according to the transient fault rate. When transient faults arrive

in bursts, it is supposed that during a short period (of the order of a

second) many transients hit the same unit. This corresponds to a component

who.would work for a while at the limits of its tolerance specifications.

We have made one simulation run supposing that the memory of the

computers could be hit by bursts. We suppose that there are 80 bursts per

million hours. A burst in average lasts half a second and during a burst the

transient fault rate is 5 per second. Thus, on the average, there are 200

transients per million hours in the memory. It can be seen that this is a

mild burst environment. Other inputs were the same as for the software TMR

of Table 9.2-I. No other transients hit the memories.

Results are intriguing: the system degrades to duplex 5 percent

more often than without burst. This is due to the fact that many bursts are

mistaken as permanents. The number of times a diagnostic is called is in-

creased by 8 percent. Thus a non-adaptive TMR system in a burst environment

9-41

would have an 8 percent larger system failure probability than the same

system without bursts. However, the diagnostibility is improved by the bursts.

This is due to the fact that a diagnostic routine is likely to return a fault

indication. This increase in diagnostibility makes the adaptive TMR in a

burst environment more reliable than in a Poisson environment.

A way to decrease the probability of mistaking a transient for

a permanent would be to decrease the "Recurrence Interval." The recurrence

interval (3s) is used in the following way: if a fault is redetected less

than 3 seconds after its recovery attempt, it is assumed that the fault is

permanent. Decreasing the recurrence interval would obviously help for

burst. Decreasing the recurrence interval too much would cause the system to

continue to attempt transient recovery on a permanent fault.

The wide variations in the results of this section show that a

better knowledge of the transient environment is necessary in -order to

optimize transient recovery. A second conclusion is that NDRO is an

excellent protection against transient damage.

9.3.7 Scheduling Effects

Fault recovery is not an instantaneous action. Thus, a fault

recovery may cause the system to miss some iteration(s). If it is not

catastrophic to miss a few consecutive iterations, then all properly designed

systems will tolerate fault recovery without problems. However, if for the

safety of the flight, it is dangerous to miss more than one iteration, then

the scheduling may be an important factor in the survivability.

We have studied 3 cases of software TMR: 2 synchronous schedulings

and one asynchronous. In all cases, we suppose that the basic iteration period

is 30 ms and that the major cycle lasts 100 periods.

The first synchronous case corresponds to a light load and a fast

comparison: the minor cycle lasts 5 ms and comparisons also take place every

5 ms.

The second case corresponds to a heavy load and a slow comparison:

the minor cycle lasts 15 ms and comparison also takes place every 15 ms.

9-42

The third case is an asynchronous scheduling: major cycle tasks can

be interrupted by minor cycle tasks which last an average of 5 ms. Comparisons

also occur every 5 ms. The major difference between asynchronous and synchronous

scheduling is that since a minor cycle task can interrupt a major cycle task,

a fault may cause damage in more than one program and thus be detected more

than once.

In all cases, it is assumed that a system failure occurs when 2

or more iterations are successively missed. Results are given in Table 9.3-X.

Triplex Duplex Failure
Leakage Leakage Diagnostibility Probability

e3 2 v2 After 100 Hours

Synchronous 4 -4

Light Load 10 21.5% 90% 19x10

Synchronous -4

Heavy Load 10-4 21.5% 73% 41x10

AsynchrOnous 10-3 21.5% 87% 21x10 -4

TABLE 9.3-X EFFECTS OF SCHEDULING

A heavy load is not a problem in triplex (or 4-plex and 5-plex)

since recovery does not interrupt significantly the normal flow of computation.

However, in duplex the situation is quite different. Since comparisons take

place every 15 ms, rollback duration is 15 ms long. If the rollback is suc-

cessful, the mission is not endangered. Thus the leakage 12 does not vary.

But if the rollback is unsuccessful, diagnostics have to be run to allow

simplex operation. It happens rather often that there is not enough time

to run these diagnostics. The diagnostibility decreases and the failure

probability increases significantly.

Asynchronous scheduling may cause a few transients to be mistaken

as permanents since they damage a few programs and are detected more than

once. However, the increase of the leakage 13 is not having any significant

9-43

consequences: it is as if the permanent fault rate was increased by one

thousandth. The diagnostibility is slightly less than with the synchronous

case because the asynchronous organization makes it slightly more likely to

miss more than one iteration during the sequence rollback-diagnostics.

In conclusion, it appears that a heavy computational load is to be

avoided. If it cannot be avoided, 5 plex and 4 plex are better than triplex

since it is less likely to degrade to duplex with these systems. Asynchronous

scheduling makes little difference from synchronous scheduling. This does not

take into account the higher complexity of an asynchronous system which may

cause some extra failures not taken into account by the simulation.

9-44

9.4 CONCLUSIONS

The conclusions reported below were obtained by use of CAST.

They are based on a ten-hour flight and failure rates thought to be applicable

to the off-the-shelf avionics computers studied. The reconfigurable computer

systems were assumed to be composed of as many as five machines.

As shown in Figure 9.3-11, the greatest improvement in system

survivability is obtained by increased redundancy. Each increment of redun-

dancy decreases the 10-hour failure probability by approximately two orders

of magnitude. The greatest failure probability decrease occurs when changing

from triplex to quadruplex, e.g., a 200-fold improvement. Increasing redun-

dancy also increases cost in terms of power, weight, and volume not only due

to the added units but due also to the increased complexity of intercommunica-

tions modules, external electronics modules, and bus switches.

Increasing redundancy has diminishing returns if there are errors

in permanent-recovery algorithm design. This error penalty becomes more

severe with added redundancy as was shown in Section 9.3.3. Using simpler

recovery algorithms, i.e., those involving less RCS adaptivity, is a possible

way of ensuring error-free recovery. However, the increase in failure prob-

ability for air-transport-type missions due to decreased adaptivity (e.g., not

adapting the system down to one computer is less than that caused by decreased

redundancy or recoverability.

Since redundancy has such a large effect on failure probability,

external hardware should have an equivalent redundancy to prevent external

failures from depressing the overall survivability.

The techniques reported here devote much attention to the modeling

of transient faults. The results show that a knowledge of the transient envi-

ronment results in effective transient recovery features. Underestimating

transient duration results in many transients being recorded as permanent,

while overestimating transient duration leaves the system unduly vulnerable

to further faults.

Finally, subject to the qualifications and assumptions described in

the first paragraph of this subsection, configuration assessment has shown that

hardware-aided software configurations provide a lower probability of failure

than mostly-hardware or mostly-software configurations.

9-45

THIS PAGE INTENTIONALLY LEFT BLANK

9-46

REFERENCES

AVIZ 72 Avizienis, A., "The Methodology of Fault-Tolerant Computing,"
Proc. First USA-Japan Computer Conference, 1972.

BOUR 69 Bouricius, W.G., et al., "Reliability Modeling Techniques For
Self-Repairing Computer Systems," Proc. ACM 1969 Ann. Conf.

BOUR 71 Bouricius, W.G., et.al., "Reliability Modeling for Fault-Tolerant
Computers", IEEE Transactions on Computers, Vol. C-20, No. 11,
November 1971.

DAVE 58 Davenport, W.B., and Root, W.L., Introduction to Random Signals
and Noise, McGraw-Hill, New York, 1958.

DENN 67 Dennery and Krzywiki, Mathematics for Physicists, Harper, 1967.

HILL 70 F.S. Hillier, G.J. Lieberman, Introduction to Operations Research,
pp. 447-450, Holden-Day, Inc., San Francisco, 1970.

KRUU 63 Kruus, J., "Upper Bounds for the Mean Life of Self-Repairing
Systems," Report R-172 Coordinated Science Laboratory, University
of Illinois, July 1963.

LIPS 68 Lipschutz, Linear Algebra, Schaum Outline (McGraw-Hill), 1968.

LYON 62 Lyons & Vanderkulk, "The Use of TMR to Improve Computer Reliability,"
IBM Journal, April 1962.

PARZ 60 Parzen, E., Modern Probability Theory and Its Applications, pp. 251-
263, Wiley & Sons, 1960.

RATN 73 Ratner, R.S., et.al., "Design of a Fault-Tolerant Airborne Digital
Computer, Volume II - Computational Requirements and Technology,"
NASA Contract NAS1-10920, Stanford Research Institute, October,
1973.

ROHR 73 Rohr, John A., "System Software for a Fault-Tolerant Digital Computer,"
Ph.D. Thesis, University of Illinois, 1973;

SHRE 66 Shreider, Y.A., The Monte Carlo Method, Pergamon Press, New York,
1966.

TSOU 73 Tsou, Ed., Daly, H.S., Swearingen, C.N., "Highly Reliable Processor
System for Space Application," AIAA Computer Network Systems
Conference, Huntsville, Alabama, April, 1973.

ULTR 74 "Fault-Tolerant Avionics Systems Architectures Study," Ultrasystems,
Inc., April, 1974, AFAL Contract F33615-73-C-1163.

THIS PAGE INTENTIONALLY LEFT BLANK

Appendices A, B, and C contain proprietary data from various

computer manufacturers. Thus these appendices have been distributed only

to Government representatives at Langley Research Center..

